1  Descriptive Data Statistics

1.1 Python: Data Cleaning & Feature Engineering

1.1.1 Library imports

library(reticulate)
use_condaenv("dssg_env", required = TRUE)
py_config()
import pandas as pd
import os
from siuba import _, group_by, summarize, filter, select, mutate, arrange, count
import matplotlib.pyplot as plt

1.1.2 Data Import

youth = pd.read_csv('../../dssg-2025-mentor-canada/Data/Data_2020-Youth-Survey.csv')

1.1.3 Preview the first 6 rows and 7 columns.

youth.iloc[:6,:8]
           ResponseID DateCollected  ... geo_postcode_fsa  children_yesno
0  ECR-vlt6-982170254     11-Feb-20  ...              NaN               2
1  ECR-vlt6-625172748     11-Feb-20  ...              NaN               1
2  ECR-vlt6-416523871      8-Feb-20  ...              NaN               2
3  ECR-vlt6-933655693     11-Feb-20  ...              NaN               1
4  ECR-vlt6-780412096     11-Feb-20  ...              NaN               2
5  ECR-vlt6-197730841      6-Feb-20  ...              T2N               2

[6 rows x 8 columns]
youth.info()

<class ‘pandas.core.frame.DataFrame’> RangeIndex: 2838 entries, 0 to 2837 Columns: 737 entries, ResponseID to Age_5year dtypes: float64(389), int64(155), object(193) memory usage: 16.0+ MB

print(youth.shape)
(2838, 737)

null_counts = youth.isnull().sum()
null_counts = null_counts[null_counts > 0]
null_counts = null_counts.reset_index()
null_counts
                        index     0
0            geo_postcode_fsa  2250
1       income_ranged_dollar_  2250
2                  geo_ca_sac  2250
3    ethnicity_ca_14_oth1_1_1  2622
4    ethnicity_ca_14_oth1_2_2  2747
..                        ...   ...
530         QS1_17_INCARE_cat    16
531          QS4_5_SATEDU_cat   310
532     QS2_25_YOUTHINIT1_cat  1844
533               Arrival_age  2439
534           Arrival_age_cat  2439

[535 rows x 2 columns]

1.1.4 Reversing one-hot encoding for the gender identity column:

gender_cols = youth.loc[:,'QS1_9_GENDER1_1_1':'QS1_9_GENDER1_6_6']
youth['QS1_9_gender'] = gender_cols.idxmax(axis = 1)
youth['QS1_9_gender'].head().reset_index()
   index       QS1_9_gender
0      0  QS1_9_GENDER1_1_1
1      1  QS1_9_GENDER1_1_1
2      2  QS1_9_GENDER1_1_1
3      3  QS1_9_GENDER1_1_1
4      4  QS1_9_GENDER1_1_1

QS1_28_EMPLOYMENT_calculated, gender_cols

1.1.5 Create estimated total year income column:

(Feature engineering)

youth['yearly_from_month'] = youth['Month_income'].fillna(0) * 12
youth['yearly_from_seimimonth'] = youth['Semimonth_income'].fillna(0) * 24
youth['yearly_from_biweek'] = youth['Biweek_income'].fillna(0)*26
youth['yearly_from_week'] = youth['Week_income'].fillna(0) * 52

youth['total_yearly_income'] = (youth['yearly_from_month'] +
                                youth['yearly_from_seimimonth'] + 
                                youth['yearly_from_biweek'] + 
                                youth['yearly_from_week'])

1.1.5.1 Preview new total_yearly_income column:

(youth['total_yearly_income']).head()
0          0.0
1    1440000.0
2          0.0
3          0.0
4          0.0
Name: total_yearly_income, dtype: float64

1.1.5.2 Save manipulated dataset to local as an intermediate processed dataset:

youth.to_csv('../../dssg-2025-mentor-canada/Data/intermediate.csv')

1.2 R: Visualization

library(tidyverse)
library(knitr)
library(reticulate)
youth <- read_csv('../../dssg-2025-mentor-canada/Data/intermediate.csv')
kable(head(youth))
…1 ResponseID DateCollected TimeCollected age age_ranged_7_18_65 gender geo_postcode_fsa children_yesno marital employment income_ranged_dollar_ geo_ca_region_8 geo_ca_province geo_ca_sac education_ca_9 ethnicity_ca_14_oth1_1_1 ethnicity_ca_14_oth1_2_2 ethnicity_ca_14_oth1_3_3 ethnicity_ca_14_oth1_4_4 ethnicity_ca_14_oth1_5_5 ethnicity_ca_14_oth1_6_6 ethnicity_ca_14_oth1_7_7 ethnicity_ca_14_oth1_8_8 ethnicity_ca_14_oth1_9_9 ethnicity_ca_14_oth1_10_10 ethnicity_ca_14_oth1_11_11 ethnicity_ca_14_oth1_12_12 ethnicity_ca_14_oth1_13_13 ethnicity_ca_14_oth1_14_14 ethnicity_ca_14_oth1_15_15 geo_postcode_UK geo_uk_region_14 income_ranged_gbp_10_15k employment_jobtype_uk_11 HH_SIZE sample_flag Country ZipState prName Locale_Language COUNTRY_PCZ QS1_1_AGE QAge_Validation QS1_2_PROV Logic_QS1_3_Ask QS1_3_COMMUNITYTYPE QS1_4_INDIGENOUS QS1_5_INDIGENOUSHS Logic_QS1_6_Qtext Logic_Qtext QS1_6_ETHNOCULTURAL1_1_1 QS1_6_ETHNOCULTURAL1_2_2 QS1_6_ETHNOCULTURAL1_3_3 QS1_6_ETHNOCULTURAL1_4_4 QS1_6_ETHNOCULTURAL1_5_5 QS1_6_ETHNOCULTURAL1_6_6 QS1_6_ETHNOCULTURAL1_7_7 QS1_6_ETHNOCULTURAL1_8_8 QS1_6_ETHNOCULTURAL1_9_9 QS1_6_ETHNOCULTURAL1_10_10 QS1_6_ETHNOCULTURAL1_11_11 QS1_6_ETHNOCULTURAL1_12_12 QS1_6_ETHNOCULTURAL1_13_13 QS1_6_ETHNOCULTURAL1_14_14 QS1_6_Other QS1_7_NEWCOMER QS1_8_NEWCOMERYEAR QS1_8_Validation QS1_9_GENDER1_1_1 QS1_9_GENDER1_2_2 QS1_9_GENDER1_3_3 QS1_9_GENDER1_4_4 QS1_9_GENDER1_5_5 QS1_9_GENDER1_6_6 QS1_9_Other QS1_10_TRANSUM QS1_11_SEXUALO QS1_11_Other QS1_12_DISABIL QS1_13_DISABIL QS1_14_DISABIL Logic_QS1_15_A QS1_15_DISABIL QS1_16_PRIMARY1_1_1 QS1_16_PRIMARY1_2_2 QS1_16_PRIMARY1_3_3 QS1_16_PRIMARY1_4_4 QS1_16_PRIMARY1_5_5 QS1_16_PRIMARY1_6_6 QS1_16_PRIMARY1_7_7 QS1_16_PRIMARY1_8_8 QS1_16_PRIMARY1_9_9 QS1_16_PRIMARY1_10_10 QS1_16_PRIMARY1_11_11 QS1_16_PRIMARY1_12_12 QS1_16_PRIMARY1_13_13 QS1_16_Other QS1_17_INCARE QS1_18_PARENTEDUC1 QS1_18_Other_1 QS1_18_PARENTEDUC2 QS1_18_Other_2 QS1_18_PARENTEDUC3 QS1_18_Other_3 QS1_18_PARENTEDUC4 QS1_18_Other_4 QS1_18_PARENTEDUC5 QS1_18_Other_5 QS1_18_PARENTEDUC6 QS1_18_Other_6 QS1_18_PARENTEDUC7 QS1_18_Other_7 QS1_18_PARENTEDUC8 QS1_18_Other_8 QS1_18_PARENTEDUC9 QS1_18_Other_9 QS1_18_PARENTEDUC10 QS1_18_Other_10 QS1_18_PARENTEDUC11 QS1_18_Other_11 QS1_19_HIGHSCHOOL QS1_20_HIGHSCHOOL QS1_21_FURTHEDUCA QS1_22_HIGHESTEDU QS1_22_Other QS1_23_YEARCOMPLE QS1_25_EMPLOYMENT Logic_QS1_26_Ask QS1_26_EMPLOYMENT QS1_26_Other QS1_27_PLANNINGRE QS1_27_Other QS1_28_EMPLOYMENT QS1_29_EMPLOYMENT QS1_29_Validation QS1_30_EMPLOYMENT1 QS1_30_MValidatio QS1_30_EMPLOYMENT2 QS1_30_SMValidati QS1_31_EMPLOYMENT QS1_31_BWValidati QS1_32_WEEKLY QS1_32_WValidatio QS2_1_MEANINGFULP QS2_2_MEANINGFULP QS2_3_PRESENCEOFM QS2_4_MENTOR61FOR QS2_5_MENTOR611PR QS2_5_Other QS2_6_MENTOREXPER QS2_7_MENTOR611SE QS2_8_UNMETNEED61 QS2_9_PRESENCEOFA QS2_10_NUMBEROFME QS2_10_Validation QS2_11_MENTOR1218 QS2_12_UNMETNEED1 Logic_QS2_14_Ask QS2_13_ACCESSBARR1_1_1 QS2_13_ACCESSBARR1_2_2 QS2_13_ACCESSBARR1_3_3 QS2_13_ACCESSBARR1_4_4 QS2_13_ACCESSBARR1_5_5 QS2_13_ACCESSBARR1_6_6 QS2_13_ACCESSBARR1_7_7 QS2_13_ACCESSBARR1_8_8 QS2_13_ACCESSBARR1_9_9 QS2_13_ACCESSBARR1_10_10 QS2_13_ACCESSBARR1_11_11 QS2_13_Other QS2_14_MENTORID QS2_14_MENTORID_2 QS2_14_MENTORID_3 Logic_MENTORID1_1_1 Logic_MENTORID1_2_2 Logic_MENTORID1_3_3 QS2_15_RELATIONS1_1_1 QS2_15_RELATIONS1_2_2 QS2_15_RELATIONS1_3_3 QS2_15_RELATIONS1_4_4 QS2_15_RELATIONS1_5_5 QS2_15_RELATIONS1_6_6 QS2_15_RELATIONS1_7_7 QS2_15_RELATIONS1_8_8 QS2_15_RELATIONS1_9_9 QS2_15_RELATIONS1_10_10 QS2_15_RELATIONS1_11_11 QS2_15_RELATIONS1_12_12 QS2_15_RELATIONS1_13_13 QS2_15_RELATIONS1_14_14 QS2_15_RELATIONS1_15_15 QS2_15_RELATIONSHIP1 QS2_16_FORMAT_1 QS2_17_TYPE_1 QS2_17_TYPE_1_Other QS2_18_LOCATION_1 QS2_18_LOCATION_1_O QS2_19_DURATION_1 QS2_20_EXPERIENCE_1 QS2_21_FOCUS_11_1_1 QS2_21_FOCUS_11_2_2 QS2_21_FOCUS_11_3_3 QS2_22_GEOLOCATI1 QS2_15_RELATIONS2_1_1 QS2_15_RELATIONS2_2_2 QS2_15_RELATIONS2_3_3 QS2_15_RELATIONS2_4_4 QS2_15_RELATIONS2_5_5 QS2_15_RELATIONS2_6_6 QS2_15_RELATIONS2_7_7 QS2_15_RELATIONS2_8_8 QS2_15_RELATIONS2_9_9 QS2_15_RELATIONS2_10_10 QS2_15_RELATIONS2_11_11 QS2_15_RELATIONS2_12_12 QS2_15_RELATIONS2_13_13 QS2_15_RELATIONS2_14_14 QS2_15_RELATIONS2_15_15 QS2_15_RELATIONSHIP2 QS2_16_FORMAT_2 QS2_17_TYPE_2 QS2_17_TYPE_2_Other QS2_18_LOCATION_2 QS2_18_LOCATION_2_O QS2_19_DURATION_2 QS2_20_EXPERIENCE_2 QS2_21_FOCUS_21_1_1 QS2_21_FOCUS_21_2_2 QS2_21_FOCUS_21_3_3 QS2_22_GEOLOCATI2 QS2_15_RELATIONS3_1_1 QS2_15_RELATIONS3_2_2 QS2_15_RELATIONS3_3_3 QS2_15_RELATIONS3_4_4 QS2_15_RELATIONS3_5_5 QS2_15_RELATIONS3_6_6 QS2_15_RELATIONS3_7_7 QS2_15_RELATIONS3_8_8 QS2_15_RELATIONS3_9_9 QS2_15_RELATIONS3_10_10 QS2_15_RELATIONS3_11_11 QS2_15_RELATIONS3_12_12 QS2_15_RELATIONS3_13_13 QS2_15_RELATIONS3_14_14 QS2_15_RELATIONS3_15_15 QS2_15_RELATIONSHIP3 QS2_16_FORMAT_3 QS2_17_TYPE_3 QS2_17_TYPE_3_Other QS2_18_LOCATION_3 QS2_18_LOCATION_3_O QS2_19_DURATION_3 QS2_20_EXPERIENCE_3 QS2_21_FOCUS_31_1_1 QS2_21_FOCUS_31_2_2 QS2_21_FOCUS_31_3_3 QS2_22_GEOLOCATI3 Logic_AP_QS2_23 QS2_23_MOSTMEANI QS2_24_MENTORAGE QS2_25_YOUTHINIT1 QS2_25_YOUTHINIT2 QS2_26_INITIATIO1_1_1 QS2_26_INITIATIO1_2_2 QS2_26_INITIATIO1_3_3 QS2_26_INITIATIO1_4_4 QS2_26_INITIATIO1_5_5 QS2_26_INITIATIO1_6_6 QS2_26_INITIATIO1_7_7 QS2_26_INITIATIO1_8_8 QS2_26_INITIATIO1_9_9 QS2_26_INITIATIO1_10_10 QS2_26_INITIATIO1_11_11 QS2_26_INITIATIO1_12_12 QS2_26_INITIATIO1_13_13 QS2_26_INITIATIO1_14_14 QS2_26_INITIATIO1_15_15 QS2_26_INITIATIO1_16_16 QS2_26_INITIATIO1_17_17 QS2_26_INITIATIONEV Logic_QS2_27_Ask QS2_27_MENTORPROGRA1 QS2_27_MENTORPROGRA2 QS2_28_MATCHCHOICE QS2_29_MATCHCRITERI1_1_1 QS2_29_MATCHCRITERI1_2_2 QS2_29_MATCHCRITERI1_3_3 QS2_29_MATCHCRITERI1_4_4 QS2_29_MATCHCRITERI1_5_5 QS2_29_MATCHCRITERI1_6_6 QS2_29_MATCHCRITERI1_7_7 QS2_29_MATCHCRITERI1_8_8 QS2_29_MATCHCRITERI1_9_9 QS2_29_MATCHCRITERI1_10_10 QS2_29_MATCHCRITERI1_11_11 QS2_29_MATCHCRITERIA_O QS2_30_MATCHSIMILAR1_1_1 QS2_30_MATCHSIMILAR1_2_2 QS2_30_MATCHSIMILAR1_3_3 QS2_30_MATCHSIMILAR1_4_4 QS2_30_MATCHSIMILAR1_5_5 QS2_31_MENTORINGREL1_1_1 QS2_31_MENTORINGREL1_2_2 QS2_31_MENTORINGREL1_3_3 QS2_31_MENTORINGREL1_4_4 QS2_31_MENTORINGREL1_5_5 QS2_32_MENTORINGENG1_1_1 QS2_32_MENTORINGENG1_2_2 QS2_32_MENTORINGENG1_3_3 QS2_32_MENTORINGENG1_4_4 QS2_32_MENTORINGENG1_5_5 QS2_32_MENTORINGENG1_6_6 QS2_32_MENTORINGENG1_7_7 QS2_32_MENTORINGENG1_8_8 QS2_32_MENTORINGENG1_9_9 QS2_32_MENTORINGENG1_10_10 QS2_32_MENTORINGENG1_11_11 QS2_32_MENTORINGENG1_12_12 QS2_32_MENTORINGENG1_13_13 QS2_32_MENTORINGENG1_14_14 QS2_32_MENTORINGENG1_15_15 QS2_32_MENTORINGENG1_16_16 QS2_32_MENTORINGENG1_17_17 QS2_32_MENTORINGENG1_18_18 QS2_32_MENTORINGENG1_19_19 QS2_32_MENTORINGENG1_20_20 QS2_32_MENTORINGENG1_21_21 QS2_32_MENTORINGENG1_22_22 QS2_33_TRANSITIONS1_1_1 QS2_33_TRANSITIONS1_2_2 QS2_33_TRANSITIONS1_3_3 QS2_33_TRANSITIONS1_4_4 QS2_33_TRANSITIONS1_5_5 QS2_33_TRANSITIONS1_6_6 QS2_33_TRANSITIONS1_7_7 QS2_33_TRANSITIONS1_8_8 QS2_33_TRANSITIONS1_9_9 QS2_33_TRANSITIONS1_10_10 QS2_33_TRANSITIONS1_11_11 QS2_33_TRANSITIONS1_12_12 QS2_33_TRANSITIONS1_13_13 QS2_33_TRANSITIONS1_14_14 QS2_33_TRANSITIONS_Ot QS2_34_SUPPORTS1_1_1 QS2_34_SUPPORTS1_2_2 QS2_34_SUPPORTS1_3_3 QS2_34_SUPPORTS1_4_4 QS2_34_SUPPORTS1_5_5 QS2_34_SUPPORTS1_6_6 QS2_34_SUPPORTS1_7_7 QS2_34_SUPPORTS1_8_8 QS2_34_SUPPORTS1_9_9 QS2_34_SUPPORTS1_10_10 QS2_34_SUPPORTS_Ot Logic_QS2_34_Valid Logic_QS2_35_Ask Logic_QS2_35_Mask1_1_1 Logic_QS2_35_Mask1_2_2 Logic_QS2_35_Mask1_3_3 Logic_QS2_35_Mask1_4_4 Logic_QS2_35_Mask1_5_5 Logic_QS2_35_Mask1_6_6 Logic_QS2_35_Mask1_7_7 Logic_QS2_35_Mask1_8_8 Logic_QS2_35_Mask1_9_9 Logic_QS2_35_Mask1_10_10 QS2_35_SUPPORTSIMPO1_1_1 QS2_35_SUPPORTSIMPO1_2_2 QS2_35_SUPPORTSIMPO1_3_3 QS2_35_SUPPORTSIMPO1_4_4 QS2_35_SUPPORTSIMPO1_5_5 QS2_35_SUPPORTSIMPO1_6_6 QS2_35_SUPPORTSIMPO1_7_7 QS2_35_SUPPORTSIMPO1_8_8 QS2_35_SUPPORTSIMPO1_9_9 QS2_35_SUPPORTSIMPO1_10_10 QS2_36_INFLUENCE1_1_1 QS2_36_INFLUENCE1_2_2 QS2_36_INFLUENCE1_3_3 QS2_36_INFLUENCE1_4_4 QS2_36_INFLUENCE1_5_5 QS2_36_INFLUENCE1_6_6 QS2_36_INFLUENCE1_7_7 QS2_36_INFLUENCE1_8_8 QS2_36_INFLUENCE1_9_9 QS2_37_HELPFULNESS QS2_38_NETGATIVEME1_1_1 QS2_38_NETGATIVEME1_2_2 QS2_38_NETGATIVEME1_3_3 QS2_38_NETGATIVEME1_4_4 QS2_38_NETGATIVEME1_5_5 QS2_38_NETGATIVEME1_6_6 QS2_38_NETGATIVEME1_7_7 QS2_38_NETGATIVEME1_8_8 QS2_38_NETGATIVEME1_9_9 QS2_38_NETGATIVEME1_10_10 QS2_38_NETGATIVEME1_11_11 QS2_38_NETGATIVEME1_12_12 QS2_38_NETGATIVEME1_13_13 QS2_38_NETGATIVEME1_14_14 QS2_38_NETGATIVEME1_15_15 QS2_38_NETGATIVEME1_16_16 QS2_38_NETGATIVEME1_17_17 QS2_38_NETGATIVEME1_18_18 QS2_38_NETGATIVEME1_19_19 QS2_38_NETGATIVEMENTO QS2_39_NEGATIVEMENT1_1_1 QS2_39_NEGATIVEMENT1_2_2 QS2_39_NEGATIVEMENT1_3_3 QS2_39_NEGATIVEMENT1_4_4 QS2_39_NEGATIVEMENT1_5_5 QS2_39_NEGATIVEMENT1_6_6 QS2_39_NEGATIVEMENT1_7_7 QS2_39_NEGATIVEMENT1_8_8 QS2_39_NEGATIVEMENT1_9_9 QS2_39_NEGATIVEMENT1_10_10 QS2_39_NEGATIVEMENT1_11_11 QS2_39_NEGATIVEMENT1_12_12 QS2_39_NEGATIVEMENT1_13_13 QS2_39_NEGATIVEMENT1_14_14 QS2_39_NEGATIVEMENT1_15_15 QS2_39_NEGATIVEMENT1_16_16 QS2_39_NEGATIVEMENT1_17_17 QS2_39_NEGATIVEMENT1_18_18 QS2_39_NEGATIVEMENT1_19_19 QS2_39_1_Other QS_40_REMATCHING_1 QS2_39_NEGATIVEMENT2_1_1 QS2_39_NEGATIVEMENT2_2_2 QS2_39_NEGATIVEMENT2_3_3 QS2_39_NEGATIVEMENT2_4_4 QS2_39_NEGATIVEMENT2_5_5 QS2_39_NEGATIVEMENT2_6_6 QS2_39_NEGATIVEMENT2_7_7 QS2_39_NEGATIVEMENT2_8_8 QS2_39_NEGATIVEMENT2_9_9 QS2_39_NEGATIVEMENT2_10_10 QS2_39_NEGATIVEMENT2_11_11 QS2_39_NEGATIVEMENT2_12_12 QS2_39_NEGATIVEMENT2_13_13 QS2_39_NEGATIVEMENT2_14_14 QS2_39_NEGATIVEMENT2_15_15 QS2_39_NEGATIVEMENT2_16_16 QS2_39_NEGATIVEMENT2_17_17 QS2_39_NEGATIVEMENT2_18_18 QS2_39_NEGATIVEMENT2_19_19 QS2_39_2_Other QS_40_REMATCHING_2 QS2_39_NEGATIVEMENT3_1_1 QS2_39_NEGATIVEMENT3_2_2 QS2_39_NEGATIVEMENT3_3_3 QS2_39_NEGATIVEMENT3_4_4 QS2_39_NEGATIVEMENT3_5_5 QS2_39_NEGATIVEMENT3_6_6 QS2_39_NEGATIVEMENT3_7_7 QS2_39_NEGATIVEMENT3_8_8 QS2_39_NEGATIVEMENT3_9_9 QS2_39_NEGATIVEMENT3_10_10 QS2_39_NEGATIVEMENT3_11_11 QS2_39_NEGATIVEMENT3_12_12 QS2_39_NEGATIVEMENT3_13_13 QS2_39_NEGATIVEMENT3_14_14 QS2_39_NEGATIVEMENT3_15_15 QS2_39_NEGATIVEMENT3_16_16 QS2_39_NEGATIVEMENT3_17_17 QS2_39_NEGATIVEMENT3_18_18 QS2_39_NEGATIVEMENT3_19_19 QS2_39_3_Other QS_40_REMATCHING_3 QS3_1_GLOBALSELFWOR1_1_1 QS3_1_GLOBALSELFWOR1_2_2 QS3_1_GLOBALSELFWOR1_3_3 QS3_1_GLOBALSELFWOR1_4_4 QS3_1_GLOBALSELFWOR1_5_5 QS3_1_GLOBALSELFWOR1_6_6 QS3_1_GLOBALSELFWOR1_7_7 QS3_1_GLOBALSELFWOR1_8_8 QS3_2_TRANSITIONWIT1_1_1 QS3_2_TRANSITIONWIT1_2_2 QS3_2_TRANSITIONWIT1_3_3 QS3_2_TRANSITIONWIT1_4_4 QS3_2_TRANSITIONWIT1_5_5 QS3_2_TRANSITIONWIT1_6_6 QS3_2_TRANSITIONWIT1_7_7 QS3_2_TRANSITIONWIT1_8_8 QS3_2_TRANSITIONWIT1_9_9 QS3_2_TRANSITIONWIT1_10_10 QS3_2_TRANSITIONWIT1_11_11 QS3_2_TRANSITIONWIT1_12_12 QS3_2_TRANSITIONWIT1_13_13 QS3_2_TRANSITIONWITHOUTMEN QS3_3_TRANSITIONSWI1_1_1 QS3_3_TRANSITIONSWI1_2_2 QS3_3_TRANSITIONSWI1_3_3 QS3_3_TRANSITIONSWI1_4_4 QS3_3_TRANSITIONSWI1_5_5 QS3_3_TRANSITIONSWI1_6_6 QS3_3_TRANSITIONSWI1_7_7 QS3_3_TRANSITIONSWI1_8_8 QS3_3_TRANSITIONSWI1_9_9 QS3_3_TRANSITIONSWI1_10_10 QS3_3_TRANSITIONSWI1_11_11 QS3_3_TRANSITIONSWI1_12_12 QS3_3_TRANSITIONSWI1_13_13 QS3_3_TRANSITIONSWI1_14_14 QS3_3_TRANSITIONSWI1_15_15 QS3_3_TRANSITIONSWI1_16_16 QS3_3_TRANSITIONSWI1_17_17 QS3_3_TRANSITIONSWITHOUTMENTO QS3_4_LIFEEVENTS1_1_1 QS3_4_LIFEEVENTS1_2_2 QS3_4_LIFEEVENTS1_3_3 QS3_4_LIFEEVENTS1_4_4 QS3_4_LIFEEVENTS1_5_5 QS3_4_LIFEEVENTS1_6_6 QS3_4_LIFEEVENTS1_7_7 QS3_4_LIFEEVENTS1_8_8 QS3_4_LIFEEVENTS1_9_9 QS3_4_LIFEEVENTS1_10_10 QS3_4_LIFEEVENTS1_11_11 QS3_4_LIFEEVENTS1_12_12 QS3_4_LIFEEVENTS1_13_13 QS3_4_LIFEEVENTS1_14_14 QS3_4_LIFEEVENTS1_15_15 QS3_4_LIFEEVENTS1_16_16 QS3_4_LIFEEVENTS1_17_17 QS3_4_LIFEEVENTS1_18_18 QS3_4_LIFEEVENTS1_19_19 QS3_4_LIFEEVENTS1_20_20 QS3_5_SCHOOLCLIMATE1_1_1 QS3_5_SCHOOLCLIMATE1_2_2 QS3_5_SCHOOLCLIMATE1_3_3 QS3_5_SCHOOLCLIMATE1_4_4 QS3_5_SCHOOLCLIMATE1_5_5 QS3_5_SCHOOLCLIMATE1_6_6 QS3_5_SCHOOLCLIMATE1_7_7 QS3_5_SCHOOLCLIMATE1_8_8 QS3_5_SCHOOLCLIMATE1_9_9 QS3_5_SCHOOLCLIMATE1_10_10 QS4_1_MEANINGFULPERSON QS4_2_MEANINGFULPERSON QS4_3_CAREERPLANNIN1_1_1 QS4_3_CAREERPLANNIN1_2_2 QS4_3_CAREERPLANNIN1_3_3 QS4_3_CAREERPLANNIN1_4_4 QS4_3_CAREERPLANNIN1_5_5 QS4_3_CAREERPLANNIN1_6_6 QS4_3_CAREERPLANNIN1_7_7 QS4_3_CAREERPLANNIN1_8_8 QS4_4_EDUCATIONALEXPEC QS4_4_Other QS4_5_SATEDU QS4_5_SATEDU_Other QS4_6_DISAPPOINTED QS4_7_SOCIALCAPITAL1_1_1 QS4_7_SOCIALCAPITAL1_2_2 QS4_7_SOCIALCAPITAL1_3_3 QS4_7_SOCIALCAPITAL1_4_4 QS4_8_HELPSEEKING1_1_1 QS4_8_HELPSEEKING1_2_2 QS4_8_HELPSEEKING1_3_3 QS4_8_HELPSEEKING1_4_4 QS4_8_HELPSEEKING1_5_5 QS4_8_HELPSEEKING1_6_6 QS4_8_HELPSEEKING1_7_7 QS4_8_HELPSEEKING1_8_8 QS4_8_HELPSEEKING1_9_9 QS4_8_HELPSEEKING1_10_10 QS4_9_MENTALHEALTH QS4_10_MENTALWELLBE1_1_1 QS4_10_MENTALWELLBE1_2_2 QS4_10_MENTALWELLBE1_3_3 QS4_10_MENTALWELLBE1_4_4 QS4_10_MENTALWELLBE1_5_5 QS4_10_MENTALWELLBE1_6_6 QS4_10_MENTALWELLBE1_7_7 QS4_11_BELONGING QS4_12_TRUST1_1_1 QS4_12_TRUST1_2_2 QS4_12_TRUST1_3_3 QS4_12_TRUST1_4_4 QS4_12_TRUST1_5_5 QS4_13_LIFEEVE1_1_1 QS4_13_LIFEEVE1_2_2 QS4_13_LIFEEVE1_3_3 QS4_13_LIFEEVE1_4_4 QS4_13_LIFEEVE1_5_5 QS4_13_LIFEEVE1_6_6 QS4_14_FORMALVOL QS4_14_Validatio QS4_15_TIMEIFFOR1 QS4_15_TIMEIFFOR2 QS4_15_TIMEIFFOR3 QS4_15_TIMEIFFOR4 QS4_15_Validatio QS4_16_FORMALVOL QS4_17_SERVEDASM QS4_18_CURRENTOR QS4_19_CURRENTME1 QS4_19_CURRENTME2 QS4_19_CURRENTME3 QS4_19_Validatio QS4_20_MENTEEAGE QS4_21_MENTORING QS4_22_PASTMENTO QS4_23_PASTFORMA1 QS4_23_PASTFORMA2 QS4_23_PASTFORMA3 QS4_23_Validatio QS4_23_MENTEEAGE QS4_24_FUTUREMEN QS4_25_FUTUREMEN QS4_26_INTERNETC QS4_27_INTERNETC1_1_1 QS4_27_INTERNETC1_2_2 QS4_27_INTERNETC1_3_3 QS4_27_INTERNETC1_4_4 QS4_28_INTERNETCON QS4_29_PRIVATECONN QS4_30_INTERNETCON QS4_31_MOBILECONNE QS4_32_MOBILECONNE1_1_1 QS4_32_MOBILECONNE1_2_2 QS4_32_MOBILECONNE1_3_3 QS4_32_MOBILECONNE1_4_4 QS4_33_MOBILECONNECT QS1_8_NEWCOMERYEAR_cat QS2_10_NUMBEROFME_cat Global_selfworth_total Future_interest_mentor Q38_LIFEEVENTS_1 Q38_LIFEEVENTS_2 Q38_LIFEEVENTS_3 Q38_LIFEEVENTS_4 Q38_LIFEEVENTS_5 Q38_LIFEEVENTS_6 Q38_LIFEEVENTS_7 Q38_LIFEEVENTS_8 Q38_LIFEEVENTS_9 Q38_LIFEEVENTS_10 Q38_LIFEEVENTS_11 Q38_LIFEEVENTS_12 Q38_LIFEEVENTS_13 Q38_LIFEEVENTS_14 Q38_LIFEEVENTS_15 Q38_LIFEEVENTS_16 Q38_LIFEEVENTS_17 Q38_LIFEEVENTS_18 Q38_LIFEEVENTS_19 Q38_LIFEEVENTS_20 Q49_LIFEEVENTS_1 Q49_LIFEEVENTS_2 Q49_LIFEEVENTS_3 Q49_LIFEEVENTS_4 Q49_LIFEEVENTS_5 Q49_LIFEEVENTS_6 QS1_4_INDIGENOUS_cat QS1_6_ETHNOCULTURAL1_cat Q49_LIFEEVENTS_Riskfactors Q49_LIFEEVENTS_Riskfactors_cat Q38_Risk_factors Q38_Risk_factors_cat QS1_9_GENDER1_cat Mentor_Age12 sexo_straight QS1_11_SEXUALO_cat QS1_22_HIGHESTEDU_cat QS1_25_EMPLOYMENT_cat QS4_9_MENTALHEALTH_cat QS4_11_BELONGING_cat QS1_12_DISABIL_cat QS1_13_DISABIL_cat QS1_19_HIGHSCHOOL_cat QS1_21_FURTHEDUC_cat QS1_3_COMMUNITYTYPE_cat QS1_3_COMMUNITYTYPE_cat2 QS2_1_MEANINGFULP_cat QS2_2_MEANINGFULP_cat QS2_3_PRESENCEOFM_cat QS2_4_MENTOR61FOR_cat QS2_6_MENTOREXPER_cat QS4_17_SERVEDASM_cat QS4_18_CURRENTOR_cat QS4_25_FUTUREMEN_cat QS4_24_FUTUREMEN_cat QS1_7_NEWCOMER_cat Month_income Semimonth_income Biweek_income Week_income QS1_28_EMPLOYMENT_calculated QS2_16_FORMAT_any Anymentor_ages618 Anyformalm_ages618 QS2_8_UNMETNEED61_cat QS2_12_UNMETNEED1_cat QS1_10_TRANSUM_cat QS2_20_EXPERIENCE_mostmeaningful QS2_20_EXPERIENCE_cat QS4_3_CAREERPLANNIN1_total QS4_7_SOCIALCAPITAL1_total QS2_16_FORMAT_mostmeaningful Any_unmetneed_6to18 Q_RELATIONSHIP1_mostmeaningful Q_RELATIONSHIP2_mostmeaningful Q_RELATIONSHIP3_mostmeaningful Q_RELATIONSHIP4_mostmeaningful Q_RELATIONSHIP5_mostmeaningful Q_RELATIONSHIP6_mostmeaningful Q_RELATIONSHIP7_mostmeaningful Q_RELATIONSHIP8_mostmeaningful Q_RELATIONSHIP9_mostmeaningful Q_RELATIONSHIP10_mostmeaningful Q_RELATIONSHIP11_mostmeaningful Q_RELATIONSHIP12_mostmeaningful Q_RELATIONSHIP13_mostmeaningful Q_RELATIONSHIP14_mostmeaningful QS2_17_TYPE_mostmeaningful QS2_18_LOCATION_mostmeaningful QS2_19_DURATION_mostmeaningful Q_FOCUS1_mostmeaningful Q_FOCUS2_mostmeaningful Q_FOCUS3_mostmeaningful Q_GEOLOCAT_mostmeaningful QS1_17_INCARE_cat QS4_5_SATEDU_cat Q46_MENTALWELLBEING_total QS2_25_YOUTHINIT1_cat Age_2year Age_census_year Q38_Risk_factors_cat2 QS1_1_AGE_cat Birth_year Arrival_age Arrival_age_cat Immigrant_exclude Age_5year QS1_9_gender yearly_from_month yearly_from_seimimonth yearly_from_biweek yearly_from_week total_yearly_income
0 ECR-vlt6-982170254 11-Feb-20 05:25:00 21 2 2 NA 2 1 3 NA 2 1 NA 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 NA NA en_US NA 21 1 Alberta 1 Urban I don’t identify as a member of these communities NA You may belong to one or more racial or cultural groups on the following list Check all that apply 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 NA Yes NA NA 1 0 0 0 0 0 NA No Heterosexual NA No NA NA NA NA 1 1 0 0 0 0 0 0 0 0 0 0 0 NA NA 5 NA 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 14 Yes Other, please specify: still in university 2019 Studying or in education/training NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes Yes Unsure NA NA NA NA 2 Yes Yes 3 1 NA No 1 NA NA NA NA NA NA NA NA NA NA NA NA shsh sh mm 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 NA No 1 NA 2 NA 4 2 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 NA No 1 NA 2 NA 3 3 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 NA No 1 NA 2 NA 5 2 1 1 1 1 NA 1 3-5 years older than me Someone else put us in touch NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 2 3 3 2 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 No Yes No No No No No No Yes Yes No No No No NA Very true Very true Very true Very true Very true Very true Very true Very true Very true 3 he supported me 1 NA NA NA NA NA NA NA NA NA NA NA 4 4 4 4 4 4 4 4 4 4 A lot A lot A lot A lot A lot A lot A lot A lot A lot 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 1 4 4 1 4 4 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 NA Unsure Unsure Unsure Unsure Unsure Unsure Unsure Unsure NA NA University diploma or certificate BELOW Bachelor’s Degree NA 1 Neutral Neutral Neutral Neutral 3 3 3 3 3 3 3 3 3 3 Good 3 3 3 3 3 3 3 Somewhat strong 3 3 3 3 3 2 2 2 2 2 2 1 1 100 NA NA NA 1 1 No NA NA NA NA NA NA NA NA NA NA NA NA NA Fairly interested Both 1 1 1 0 0 2 1 NA 1 1 1 0 0 1 NA 1 to 5 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Not Indigenous NA 0 No Risk factors 0 No Risk factors Woman Yes mentor NA Heterosexual NA Studying and/ or working Good/ Excellent Strong/ somewhat strong No NA Yes Yes Urban/Sub 1 Yes Yes NA NA NA No NA Formal or both Very/ Fairly interested Yes NA NA NA NA NA No Yes No Yes No No Mostly positive Positive experience 32 12 No Yes 0 0 1 0 0 0 0 0 0 0 0 0 0 0 One-on-one In community 12+ months 1 0 1 Yes No Some university or more 21 Non-youth initiated 21 to 22 2 0 or 1 risk factor 18-21 1999 NA NA Not immigrant or <=18 at arrival 18 to 24 QS1_9_GENDER1_1_1 0 0 0 0 0
1 ECR-vlt6-625172748 11-Feb-20 10:53:00 22 2 2 NA 1 1 1 NA 5 9 NA 9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 NA NA en_US NA 22 1 Ontario 1 Suburban Métis 1 You may also belong to one or more racial or cultural groups on the following list Check all that apply 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 NA Yes NA NA 1 0 0 0 0 0 NA No Asexual NA Yes No 13 1 9 1 1 0 0 0 0 0 0 1 0 0 0 0 NA NA 5 NA 4 NA NA NA NA NA NA NA NA NA NA NA NA NA 9 NA NA NA NA NA Yes 9 Yes University diploma or certificate BELOW Bachelor’s Degree NA 2019 Working (paid work for at least 1 hr/week) NA NA NA NA NA Monthly NA NA 10000 1 NA NA NA NA NA NA Yes No Yes No NA NA Always positive NA Yes No NA NA 1 Yes 2 1 1 0 0 0 1 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 3 3 3 2 2 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 NA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 NA 1 1 3 2 1 2 1 2 1 2 2 1 3 3 1 2 2 2 1 2 1 2 2 2 3 1 2 3 3 3 3 NA Agree Somewhat agree Agree Somewhat agree Somewhat disagree Somewhat agree Somewhat agree Agree NA NA Master’s degree (e.g. M.B.A., M.A., M.Sc.) NA 1 Disagree Agree Disagree Strongly Agree 3 4 5 1 2 5 2 3 2 3 Good 1 2 4 2 3 5 3 Somewhat weak 2 2 3 1 3 1 2 2 2 2 3 1 1 NA NA 1 NA 1 2 Yes, and I am currently a mentor Informal NA NA NA NA Under 18 years old 1 NA NA NA NA NA NA Fairly interested Both 1 1 1 0 0 1 1 NA 1 1 1 0 0 3 NA NA 16 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 Indigenous White only 1 1 or more risk factors 6 1 or more risk factors Woman No mentor NA Other Some university or more Studying and/ or working Good/ Excellent Weak/ somewhat weak Yes No Yes Yes Urban/Sub 1 Yes No Yes No Positive experience Yes Informal only Formal or both Very/ Fairly interested Yes 120000 NA NA NA 120000 NA Yes No Yes Yes No NA NA 41 13 NA Yes NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA No Some university or more 20 NA 21 to 22 2 2 or more risk ractors 22-25 1998 NA NA Not immigrant or <=18 at arrival 18 to 24 QS1_9_GENDER1_1_1 1440000 0 0 0 1440000
2 ECR-vlt6-416523871 8-Feb-20 46:03:00 22 2 1 NA 2 5 3 NA 7 6 NA 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 NA NA en_US NA 21 1 Yukon 1 Remote First Nations (North American Indian) 4 You may also belong to one or more racial or cultural groups on the following list Check all that apply 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 NA Prefer not to answer NA NA 1 0 0 0 0 0 NA Prefer not to answer Gay NA No NA NA NA NA 0 0 0 0 1 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA 8 NA NA NA NA NA NA NA NA NA NA NA NA NA Prefer not to answer NA No NA NA NA Studying or in education/training NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA No Unsure No NA NA NA NA 1 Unsure No NA NA 3 No 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 3 1 4 1 4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 2 3 2 4 2 1 1 1 2 1 4 3 3 3 1 1 1 2 1 1 1 4 3 1 2 1 2 1 1 1 1 Agree Somewhat agree Unsure Disagree Completely disagree Agree Completely agree Completely agree NA NA Certificate of Apprenticeship or Certificate of Qualification NA 3 Strongly disagree Strongly Agree Strongly disagree Neutral 1 5 5 1 3 2 2 5 1 4 Excellent 1 1 2 2 5 3 5 Don’t know 1 3 1 4 5 1 2 2 1 4 3 0 1 NA NA NA NA NA NA Yes, and I am currently a mentor Formal NA 0 1 1 Unsure 1 NA NA NA NA NA NA Fairly interested Both 3 NA NA NA NA NA NA NA 4 NA NA NA NA NA NA NA 21 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 Indigenous White only 2 1 or more risk factors 6 1 or more risk factors Woman No mentor NA Other NA Studying and/ or working Good/ Excellent NA No NA NA No Rural/remote 3 No NA No NA NA Yes Formal or both Formal or both Very/ Fairly interested NA NA NA NA NA NA NA No NA NA No NA NA NA 38 10 NA No NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA No Less than University 19 NA 21 to 22 2 2 or more risk ractors 18-21 1999 NA NA Not immigrant or <=18 at arrival 18 to 24 QS1_9_GENDER1_1_1 0 0 0 0 0
3 ECR-vlt6-933655693 11-Feb-20 30:28:00 18 2 2 NA 1 1 2 NA 1 2 NA 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 NA NA en_US NA 18 1 British Columbia 1 Urban I don’t identify as a member of these communities NA You may belong to one or more racial or cultural groups on the following list Check all that apply 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 NA No 2018 1 1 0 0 0 0 0 NA No Bisexual, pansexual, or queer NA Yes Yes 15 1 17 1 1 0 0 0 0 0 0 0 0 0 0 0 NA NA 9 NA 11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 17 Yes Unsure NA 2019 Neither of the above NA 1 NA 1 NA NA NA NA NA NA NA NA NA NA NA NA No Yes No NA NA NA NA 2 No Yes 1 1 NA No 1 NA NA NA NA NA NA NA NA NA NA NA NA bark NA NA 1 NA NA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 NA No 2 NA 2 NA 4 2 1 0 0 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 1 More than 6 years older than me Someone else put us in touch NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 3 3 2 1 5 3 2 3 5 3 3 1 1 3 3 3 3 2 1 1 3 3 3 3 3 3 3 3 1 2 3 Yes No Yes No No No No No No No No No No No NA Not very true Very true Very true Not very true Not very true Very true Very true Sometimes true Not very true 2 na 1 NA NA NA NA NA NA NA NA NA NA NA 4 4 4 4 4 4 4 4 4 4 A little Some A lot A lot A little A lot A lot Quite a bit Some 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4 3 2 1 4 4 4 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 3 3 1 1 2 3 3 NA Completely disagree Completely agree Completely disagree Completely disagree Completely agree Disagree Completely disagree Completely disagree 5 NA University diploma or certificate BELOW Bachelor’s Degree NA 2 Disagree Strongly Agree Strongly Agree Strongly Agree 3 4 1 2 1 5 1 5 2 2 Fair 2 2 2 1 2 5 5 Somewhat weak 1 3 5 2 3 2 2 2 1 2 2 1 1 6 NA NA NA 1 2 No NA NA NA NA NA NA NA NA NA NA NA NA NA Not that interested Informal 1 1 1 0 0 1 2 NA 1 1 1 0 0 1 2016 to 2020 1 to 5 23 2 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 Not Indigenous White only 1 1 or more risk factors 2 1 or more risk factors Woman Yes mentor NA Other NA Not in employ or edu Poor or fair Weak/ somewhat weak Yes Yes Yes Yes Urban/Sub 1 No Yes No NA NA No NA Informal only Not interested No NA NA NA NA NA No Yes No No No No Mostly positive Positive experience 21 17 No No 0 0 0 0 0 0 0 0 0 0 0 0 0 1 With other youth In community 12+ months 1 0 0 No No Some university or more 19 Non-youth initiated 18 to 20 1 2 or more risk ractors 18-21 2002 16 12-18 Not immigrant or <=18 at arrival 18 to 24 QS1_9_GENDER1_1_1 0 0 0 0 0
4 ECR-vlt6-780412096 11-Feb-20 35:51:00 24 2 2 NA 2 1 1 NA 2 1 NA 7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 NA NA en_US NA 23 1 Alberta 1 Suburban I don’t identify as a member of these communities NA You may belong to one or more racial or cultural groups on the following list Check all that apply 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 NA Yes NA NA 1 0 0 0 0 0 NA No Heterosexual NA No NA NA NA NA 1 1 0 0 0 0 0 0 0 0 0 0 0 NA NA 9 NA 11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 5 Yes Bachelor’s degree (e.g. BA, BSc, B.Ed., B.Eng including LL.B-law degree) NA 2017 Working (paid work for at least 1 hr/week) NA NA NA NA NA Yearly 89000 1 NA NA NA NA NA NA NA NA Unsure Yes Unsure NA NA NA NA 3 No Unsure NA NA 3 Unsure 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 3 3 3 4 3 3 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 1 2 2 1 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 3 2 2 2 2 2 2 2 3 3 2 2 Agree Agree Agree Agree Agree Agree Agree Agree NA NA Master’s degree (e.g. M.B.A., M.A., M.Sc.) NA 1 Agree Agree Agree Agree 4 3 3 3 3 3 3 3 3 3 Excellent 3 4 4 4 4 3 5 Somewhat strong 5 3 3 1 3 2 2 2 2 2 2 2 1 24 NA NA NA 1 3 Yes, I have been a mentor but am not currently a mentor NA NA NA NA NA NA 2 2 NA NA NA NA 1 Fairly interested Unsure 1 0 0 1 0 NA NA NA 2 NA NA NA NA NA NA NA 25 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Not Indigenous White only 0 No Risk factors 1 1 or more risk factors Woman NA NA Heterosexual Some university or more Studying and/ or working Good/ Excellent Strong/ somewhat strong No NA Yes Yes Urban/Sub 1 NA Yes NA NA NA Yes NA NA Very/ Fairly interested Yes NA NA NA NA 89000 NA NA NA No NA No NA NA 48 16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA No Some university or more 27 NA 23 to 24 2 0 or 1 risk factor 22-25 1997 NA NA Not immigrant or <=18 at arrival 18 to 24 QS1_9_GENDER1_1_1 0 0 0 0 0
5 ECR-vlt6-197730841 6-Feb-20 15:10:00 23 2 2 T2N 2 1 1 2 2 1 825 3 NA 1 NA 1 NA NA NA NA NA NA NA 1 NA NA NA NA NA NA NA NA NA 2 NA NA en_US CA 23 1 Alberta 1 Urban Métis 2 You may also belong to one or more racial or cultural groups on the following list Check all that apply 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 NA Yes NA NA 1 0 0 0 0 0 NA No Bisexual, pansexual, or queer NA Yes Yes 13 1 3 0 0 0 0 1 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA 4 NA NA NA NA NA NA NA NA NA NA NA NA NA Yes 12 No NA NA NA Working (paid work for at least 1 hr/week) NA NA NA NA NA Bi-weekly NA NA NA NA NA NA 1000 1 NA NA Yes Yes Unsure NA NA NA NA 2 No Yes 1 1 NA Yes 1 0 1 1 1 0 1 0 0 0 0 0 NA MrL MissM Mom 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA Yes 3 NA 4 Outside somewhere don’t remember 4 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA No 1 NA 1 NA 4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 My mom No 1 NA 4 At home 5 2 1 0 1 1 NA 2 More than 6 years older than me The mentor did NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 2 2 3 2 4 4 3 4 4 3 3 2 1 2 3 3 3 3 2 3 2 2 3 3 3 3 3 3 2 2 2 Yes Yes No No Yes No No No No No No No No No NA Sometimes true Not very true Not very true Sometimes true Sometimes true Not very true Not very true Not very true Sometimes true 1 Idk 1 NA NA NA NA NA NA NA NA NA NA NA 2 2 4 2 3 1 1 3 2 1 Quite a bit A little Some A little Quite a bit Quite a bit A lot Quite a bit Quite a bit 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 1 2 2 1 3 3 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2 2 1 1 1 1 1 2 2 3 2 2 2 2 2 2 1 2 2 2 3 3 3 3 2 1 1 1 3 2 3 NA Unsure Unsure Unsure Unsure Unsure Agree Unsure Unsure NA NA University diploma or certificate ABOVE Bachelor’s Degree NA 1 Neutral Neutral Neutral Neutral 3 3 3 3 3 3 3 3 3 3 Fair 3 4 3 3 2 3 3 Somewhat weak 4 3 4 3 3 1 2 2 2 1 2 0 1 NA NA NA NA NA NA No NA NA NA NA NA NA NA NA NA NA NA NA NA Fairly interested Unsure 1 1 1 0 0 1 1 NA 1 1 1 0 0 1 NA 1 to 5 16 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 Indigenous Non-white or combination 2 1 or more risk factors 5 1 or more risk factors Woman Yes mentor NA Other NA Studying and/ or working Poor or fair Weak/ somewhat weak Yes Yes Yes No Urban/Sub 1 Yes Yes NA NA NA No NA NA Very/ Fairly interested Yes NA NA 24000 NA 24000 Yes Yes Yes No Yes No Always positive Positive experience 34 12 No Yes 1 0 0 0 0 0 0 0 0 0 0 0 0 0 One-on-one At School 12+ months 1 1 1 Yes No Some university or more 21 Non-youth initiated 23 to 24 2 2 or more risk ractors 22-25 1997 NA NA Not immigrant or <=18 at arrival 18 to 24 QS1_9_GENDER1_1_1 0 0 624000 0 624000

1.2.1 Histograms to examine distributions:

1.2.1.1 Total estimated yearly income:

ggplot(youth, aes(x = total_yearly_income)) +
    geom_histogram() +
    scale_y_log10() +
    labs(title = "Distribution of total estimated yearly income",
    x = "Estimate Total Yearly Income ($)") +
    theme_minimal()

1.2.1.2 Frequency count of each gender identity (QS1_9_gender):

ggplot(youth, aes(x = QS1_9_gender, fill = QS1_9_gender)) +
    geom_bar() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

1.2.1.3 Compare gender identity to estimated yearly total income (total_yearly_income):

ggplot(youth, aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
    geom_bar(stat = "identity") +
    labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

ggplot(youth, aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
    geom_boxplot() +
    labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

youth |>
filter(total_yearly_income < 29380) |>
ggplot( aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
    geom_bar(stat = "identity", position = "dodge") +
    labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

youth |>
filter(total_yearly_income < 29380) |>
ggplot( aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
    geom_bar(stat = "identity", position = "stack") +
    labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

1.2.1.4 Comparing further education (QS1_21_FURTHEDUCA) and current income:

ggplot(youth, aes(x = QS1_21_FURTHEDUCA, y = total_yearly_income, fill = QS1_9_gender)) +
    geom_boxplot(outliers = FALSE) +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

1.2.1.5 Remove outlier in no group by removing the observations with total_yearly_income $29,380, the low-income for an individual person in 2024 in canada.

youth |>
filter(total_yearly_income < 29380) |>
ggplot(aes(x = QS1_21_FURTHEDUCA, y = total_yearly_income, fill = QS1_9_gender)) +
    geom_bar(stat = "identity", position = "dodge") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

1.2.1.6 Visualize Mental health outcome QS4_9_MENTALHEALTH (or QS4_9_MENTALHEALTH_cat) / QS4_11_BELONGING depending on early mentee experience (QS2_3_PRESENCEOFM_cat or QS2_3_PRESENCEOFM)

youth |>
    filter(!is.na(QS4_9_MENTALHEALTH_cat)) |>
    drop_na(QS2_3_PRESENCEOFM_cat) |>
    ggplot(aes(x = QS2_3_PRESENCEOFM_cat, fill = QS4_9_MENTALHEALTH_cat)) +
    geom_bar(position = "dodge") +
    labs(x = "Early life mentor experience (age 6-11 years old)", fill = "Current Mental Health Rating")

youth |>
    filter(!is.na(QS4_9_MENTALHEALTH_cat)) |>
    drop_na(QS2_3_PRESENCEOFM_cat) |>
    ggplot(aes(x = QS2_3_PRESENCEOFM_cat, fill = QS4_9_MENTALHEALTH_cat)) +
    geom_bar(position = "fill") +
    labs(x = "Early life mentor experience (age 6-11 years old)", fill = "Current Mental Health Rating")

1.3 Python: Visualization

1.3.0.1 Remove unesscary columns and indicate text columns

df_dropped = youth.iloc[:, 41:]

# drop logic and validation columns
df_dropped = df_dropped.drop(columns=['QAge_Validation', 'Logic_QS1_6_Qtext', 'Logic_Qtext', 'QS1_8_Validation', 'Logic_QS1_26_Ask', 'QS1_29_Validation', 
                              'QS1_30_MValidatio', 'QS1_30_SMValidati', 'QS1_31_BWValidati', 'QS1_32_WValidatio', 'QS2_10_Validation', 'Logic_QS2_14_Ask','Logic_MENTORID1_1_1',
                              'Logic_MENTORID1_2_2', 'Logic_MENTORID1_3_3', 'Logic_AP_QS2_23', 'Logic_QS2_27_Ask', 'Logic_QS2_34_Valid', 'Logic_QS2_35_Ask', 'Logic_QS2_35_Mask1_1_1',
                              'Logic_QS2_35_Mask1_2_2', 'Logic_QS2_35_Mask1_3_3', 'Logic_QS2_35_Mask1_4_4', 'Logic_QS2_35_Mask1_5_5', 'Logic_QS2_35_Mask1_6_6', 'Logic_QS2_35_Mask1_7_7',
                              'Logic_QS2_35_Mask1_8_8', 'Logic_QS2_35_Mask1_9_9', 'Logic_QS2_35_Mask1_10_10', 'QS4_14_Validatio', 'QS4_15_Validatio', 'QS4_19_Validatio', 'QS4_23_Validatio'
    
                              ])

text_columns = ['QS1_6_Other', 'QS1_9_Other', 'QS1_11_Other', 'QS1_16_Other', 'QS1_18_Other_1', 'QS1_18_Other_2', 'QS1_18_Other_3', 'QS1_18_Other_4', 'QS1_18_Other_5', 'QS1_18_Other_6', 'QS1_18_Other_7', 'QS1_18_Other_8', 'QS1_18_Other_9', 'QS1_18_Other_10', 
                'QS1_18_Other_11', 'QS1_22_Other', 'QS1_26_Other', 'QS1_27_Other', 'QS2_13_Other', 'QS2_14_MENTORID', 'QS2_14_MENTORID_2', 'QS2_14_MENTORID_3', 'QS2_18_LOCATION_1_O', 'QS2_15_RELATIONSHIP2', 'QS2_17_TYPE_2_Other', 'QS2_18_LOCATION_2_O', 'QS2_15_RELATIONSHIP3',
                'QS2_17_TYPE_3_Other', 'QS2_18_LOCATION_3_O', 'QS2_25_YOUTHINIT2', 'QS2_27_MENTORPROGRA2', 'QS2_33_TRANSITIONS_Ot', 'QS2_34_SUPPORTS_Ot', 'QS2_38_NETGATIVEMENTO', 'QS3_2_TRANSITIONWITHOUTMEN', 'QS3_3_TRANSITIONSWITHOUTMENTO', 'QS4_4_Other', 'QS4_5_SATEDU_Other']

                

1.3.0.2 Plot a histogram of age

df_dropped['QS1_1_AGE'].plot.hist(bins=10, edgecolor='black')
<Axes: ylabel='Frequency'>
plt.xlabel('Age')
Text(0.5, 0, 'Age')
plt.ylabel('Frequency')
Text(0, 0.5, 'Frequency')
plt.title('Histogram of Age')
Text(0.5, 1.0, 'Histogram of Age')
plt.show()

1.3.0.3 Table of observations for each province/territory

province_counts = df_dropped['QS1_2_PROV'].value_counts()
print(province_counts)
QS1_2_PROV
Ontario                      1097
Quebec                        610
Alberta                       353
British Columbia              347
Manitoba                       95
Saskatchewan                   87
New Brunswick                  67
Nova Scotia                    60
Outside of Canada              37
Newfoundland and Labrador      33
Prefer not to say              21
Prince Edward Island           14
Unsure                          7
Yukon                           6
Northwest Territories           3
Nunavut                         1
Name: count, dtype: int64

1.3.0.4 Employment counts for indigenous status

youth['QS1_25_EMPLOYMENT_abrivated'] = youth['QS1_25_EMPLOYMENT'].replace({
    'Working (paid work for at least 1 hr/week)': 'Working',
    'Studying or in education/training': 'Studying',
    'Neither of the above': 'Neither',
    'Both': 'Both'
})

youth['QS1_4_INDIGENOUS_abrivated'] = youth['QS1_4_INDIGENOUS'].replace({
    "I don't identify as a member of these communities": 'Non-Indigenous',
    'First Nations (North American Indian)': 'First Nations',
    'Prefer not to say': 'Prefer not to say',
    'Unsure': 'Unsure',
    'Métis': 'Métis',
    'Inuk (Inuit)': 'Inuk'
})

table = pd.crosstab(youth['QS1_4_INDIGENOUS_abrivated'], youth['QS1_25_EMPLOYMENT_abrivated'])
print(table)
QS1_25_EMPLOYMENT_abrivated  Both  Neither  Studying  Working
QS1_4_INDIGENOUS_abrivated                                   
First Nations                  23       29        38       85
Inuk                            2        1         2        8
Métis                          14       19        14       59
Non-Indigenous                263      293       503     1254
Prefer not to say              12       36        30       33
Unsure                         20       23        29       48

1.3.0.5 Presence of mentors in early life and adolescence

presence_of_ment_611 = df_dropped['QS2_3_PRESENCEOFM'].value_counts()
presence_of_ment_1218 = df_dropped['QS2_9_PRESENCEOFA'].value_counts()

print("Presence of Mentor (ages 6-11) (QS2_3_PRESENCEOFM):")
Presence of Mentor (ages 6-11) (QS2_3_PRESENCEOFM):
print(presence_of_ment_611)
QS2_3_PRESENCEOFM
No                   1451
Yes                  1059
Unsure                275
Prefer not to say      53
Name: count, dtype: int64
print("Presence of Mentor (ages 12-18) (QS2_3_PRESENCEOFM):")
Presence of Mentor (ages 12-18) (QS2_3_PRESENCEOFM):
print(presence_of_ment_1218)
QS2_9_PRESENCEOFA
No                   1373
Yes                  1148
Unsure                264
Prefer not to say      53
Name: count, dtype: int64