library(reticulate)
use_condaenv("dssg_env", required = TRUE)
py_config()
1 Descriptive Data Statistics
1.1 Python: Data Cleaning & Feature Engineering
1.1.1 Library imports
import pandas as pd
import os
from siuba import _, group_by, summarize, filter, select, mutate, arrange, count
import matplotlib.pyplot as plt
1.1.2 Data Import
= pd.read_csv('../../dssg-2025-mentor-canada/Data/Data_2020-Youth-Survey.csv') youth
1.1.3 Preview the first 6 rows and 7 columns.
6,:8] youth.iloc[:
ResponseID DateCollected ... geo_postcode_fsa children_yesno
0 ECR-vlt6-982170254 11-Feb-20 ... NaN 2
1 ECR-vlt6-625172748 11-Feb-20 ... NaN 1
2 ECR-vlt6-416523871 8-Feb-20 ... NaN 2
3 ECR-vlt6-933655693 11-Feb-20 ... NaN 1
4 ECR-vlt6-780412096 11-Feb-20 ... NaN 2
5 ECR-vlt6-197730841 6-Feb-20 ... T2N 2
[6 rows x 8 columns]
youth.info()
<class ‘pandas.core.frame.DataFrame’> RangeIndex: 2838 entries, 0 to 2837 Columns: 737 entries, ResponseID to Age_5year dtypes: float64(389), int64(155), object(193) memory usage: 16.0+ MB
print(youth.shape)
(2838, 737)
= youth.isnull().sum()
null_counts = null_counts[null_counts > 0] null_counts
= null_counts.reset_index()
null_counts null_counts
index 0
0 geo_postcode_fsa 2250
1 income_ranged_dollar_ 2250
2 geo_ca_sac 2250
3 ethnicity_ca_14_oth1_1_1 2622
4 ethnicity_ca_14_oth1_2_2 2747
.. ... ...
530 QS1_17_INCARE_cat 16
531 QS4_5_SATEDU_cat 310
532 QS2_25_YOUTHINIT1_cat 1844
533 Arrival_age 2439
534 Arrival_age_cat 2439
[535 rows x 2 columns]
1.1.4 Reversing one-hot encoding for the gender identity column:
= youth.loc[:,'QS1_9_GENDER1_1_1':'QS1_9_GENDER1_6_6']
gender_cols 'QS1_9_gender'] = gender_cols.idxmax(axis = 1)
youth['QS1_9_gender'].head().reset_index() youth[
index QS1_9_gender
0 0 QS1_9_GENDER1_1_1
1 1 QS1_9_GENDER1_1_1
2 2 QS1_9_GENDER1_1_1
3 3 QS1_9_GENDER1_1_1
4 4 QS1_9_GENDER1_1_1
QS1_28_EMPLOYMENT_calculated, gender_cols
1.1.5 Create estimated total year income column:
(Feature engineering)
'yearly_from_month'] = youth['Month_income'].fillna(0) * 12
youth['yearly_from_seimimonth'] = youth['Semimonth_income'].fillna(0) * 24
youth['yearly_from_biweek'] = youth['Biweek_income'].fillna(0)*26
youth['yearly_from_week'] = youth['Week_income'].fillna(0) * 52
youth[
'total_yearly_income'] = (youth['yearly_from_month'] +
youth['yearly_from_seimimonth'] +
youth['yearly_from_biweek'] +
youth['yearly_from_week']) youth[
1.1.5.1 Preview new total_yearly_income
column:
'total_yearly_income']).head() (youth[
0 0.0
1 1440000.0
2 0.0
3 0.0
4 0.0
Name: total_yearly_income, dtype: float64
1.1.5.2 Save manipulated dataset to local as an intermediate processed dataset:
'../../dssg-2025-mentor-canada/Data/intermediate.csv') youth.to_csv(
1.2 R: Visualization
library(tidyverse)
library(knitr)
library(reticulate)
<- read_csv('../../dssg-2025-mentor-canada/Data/intermediate.csv')
youth kable(head(youth))
…1 | ResponseID | DateCollected | TimeCollected | age | age_ranged_7_18_65 | gender | geo_postcode_fsa | children_yesno | marital | employment | income_ranged_dollar_ | geo_ca_region_8 | geo_ca_province | geo_ca_sac | education_ca_9 | ethnicity_ca_14_oth1_1_1 | ethnicity_ca_14_oth1_2_2 | ethnicity_ca_14_oth1_3_3 | ethnicity_ca_14_oth1_4_4 | ethnicity_ca_14_oth1_5_5 | ethnicity_ca_14_oth1_6_6 | ethnicity_ca_14_oth1_7_7 | ethnicity_ca_14_oth1_8_8 | ethnicity_ca_14_oth1_9_9 | ethnicity_ca_14_oth1_10_10 | ethnicity_ca_14_oth1_11_11 | ethnicity_ca_14_oth1_12_12 | ethnicity_ca_14_oth1_13_13 | ethnicity_ca_14_oth1_14_14 | ethnicity_ca_14_oth1_15_15 | geo_postcode_UK | geo_uk_region_14 | income_ranged_gbp_10_15k | employment_jobtype_uk_11 | HH_SIZE | sample_flag | Country | ZipState | prName | Locale_Language | COUNTRY_PCZ | QS1_1_AGE | QAge_Validation | QS1_2_PROV | Logic_QS1_3_Ask | QS1_3_COMMUNITYTYPE | QS1_4_INDIGENOUS | QS1_5_INDIGENOUSHS | Logic_QS1_6_Qtext | Logic_Qtext | QS1_6_ETHNOCULTURAL1_1_1 | QS1_6_ETHNOCULTURAL1_2_2 | QS1_6_ETHNOCULTURAL1_3_3 | QS1_6_ETHNOCULTURAL1_4_4 | QS1_6_ETHNOCULTURAL1_5_5 | QS1_6_ETHNOCULTURAL1_6_6 | QS1_6_ETHNOCULTURAL1_7_7 | QS1_6_ETHNOCULTURAL1_8_8 | QS1_6_ETHNOCULTURAL1_9_9 | QS1_6_ETHNOCULTURAL1_10_10 | QS1_6_ETHNOCULTURAL1_11_11 | QS1_6_ETHNOCULTURAL1_12_12 | QS1_6_ETHNOCULTURAL1_13_13 | QS1_6_ETHNOCULTURAL1_14_14 | QS1_6_Other | QS1_7_NEWCOMER | QS1_8_NEWCOMERYEAR | QS1_8_Validation | QS1_9_GENDER1_1_1 | QS1_9_GENDER1_2_2 | QS1_9_GENDER1_3_3 | QS1_9_GENDER1_4_4 | QS1_9_GENDER1_5_5 | QS1_9_GENDER1_6_6 | QS1_9_Other | QS1_10_TRANSUM | QS1_11_SEXUALO | QS1_11_Other | QS1_12_DISABIL | QS1_13_DISABIL | QS1_14_DISABIL | Logic_QS1_15_A | QS1_15_DISABIL | QS1_16_PRIMARY1_1_1 | QS1_16_PRIMARY1_2_2 | QS1_16_PRIMARY1_3_3 | QS1_16_PRIMARY1_4_4 | QS1_16_PRIMARY1_5_5 | QS1_16_PRIMARY1_6_6 | QS1_16_PRIMARY1_7_7 | QS1_16_PRIMARY1_8_8 | QS1_16_PRIMARY1_9_9 | QS1_16_PRIMARY1_10_10 | QS1_16_PRIMARY1_11_11 | QS1_16_PRIMARY1_12_12 | QS1_16_PRIMARY1_13_13 | QS1_16_Other | QS1_17_INCARE | QS1_18_PARENTEDUC1 | QS1_18_Other_1 | QS1_18_PARENTEDUC2 | QS1_18_Other_2 | QS1_18_PARENTEDUC3 | QS1_18_Other_3 | QS1_18_PARENTEDUC4 | QS1_18_Other_4 | QS1_18_PARENTEDUC5 | QS1_18_Other_5 | QS1_18_PARENTEDUC6 | QS1_18_Other_6 | QS1_18_PARENTEDUC7 | QS1_18_Other_7 | QS1_18_PARENTEDUC8 | QS1_18_Other_8 | QS1_18_PARENTEDUC9 | QS1_18_Other_9 | QS1_18_PARENTEDUC10 | QS1_18_Other_10 | QS1_18_PARENTEDUC11 | QS1_18_Other_11 | QS1_19_HIGHSCHOOL | QS1_20_HIGHSCHOOL | QS1_21_FURTHEDUCA | QS1_22_HIGHESTEDU | QS1_22_Other | QS1_23_YEARCOMPLE | QS1_25_EMPLOYMENT | Logic_QS1_26_Ask | QS1_26_EMPLOYMENT | QS1_26_Other | QS1_27_PLANNINGRE | QS1_27_Other | QS1_28_EMPLOYMENT | QS1_29_EMPLOYMENT | QS1_29_Validation | QS1_30_EMPLOYMENT1 | QS1_30_MValidatio | QS1_30_EMPLOYMENT2 | QS1_30_SMValidati | QS1_31_EMPLOYMENT | QS1_31_BWValidati | QS1_32_WEEKLY | QS1_32_WValidatio | QS2_1_MEANINGFULP | QS2_2_MEANINGFULP | QS2_3_PRESENCEOFM | QS2_4_MENTOR61FOR | QS2_5_MENTOR611PR | QS2_5_Other | QS2_6_MENTOREXPER | QS2_7_MENTOR611SE | QS2_8_UNMETNEED61 | QS2_9_PRESENCEOFA | QS2_10_NUMBEROFME | QS2_10_Validation | QS2_11_MENTOR1218 | QS2_12_UNMETNEED1 | Logic_QS2_14_Ask | QS2_13_ACCESSBARR1_1_1 | QS2_13_ACCESSBARR1_2_2 | QS2_13_ACCESSBARR1_3_3 | QS2_13_ACCESSBARR1_4_4 | QS2_13_ACCESSBARR1_5_5 | QS2_13_ACCESSBARR1_6_6 | QS2_13_ACCESSBARR1_7_7 | QS2_13_ACCESSBARR1_8_8 | QS2_13_ACCESSBARR1_9_9 | QS2_13_ACCESSBARR1_10_10 | QS2_13_ACCESSBARR1_11_11 | QS2_13_Other | QS2_14_MENTORID | QS2_14_MENTORID_2 | QS2_14_MENTORID_3 | Logic_MENTORID1_1_1 | Logic_MENTORID1_2_2 | Logic_MENTORID1_3_3 | QS2_15_RELATIONS1_1_1 | QS2_15_RELATIONS1_2_2 | QS2_15_RELATIONS1_3_3 | QS2_15_RELATIONS1_4_4 | QS2_15_RELATIONS1_5_5 | QS2_15_RELATIONS1_6_6 | QS2_15_RELATIONS1_7_7 | QS2_15_RELATIONS1_8_8 | QS2_15_RELATIONS1_9_9 | QS2_15_RELATIONS1_10_10 | QS2_15_RELATIONS1_11_11 | QS2_15_RELATIONS1_12_12 | QS2_15_RELATIONS1_13_13 | QS2_15_RELATIONS1_14_14 | QS2_15_RELATIONS1_15_15 | QS2_15_RELATIONSHIP1 | QS2_16_FORMAT_1 | QS2_17_TYPE_1 | QS2_17_TYPE_1_Other | QS2_18_LOCATION_1 | QS2_18_LOCATION_1_O | QS2_19_DURATION_1 | QS2_20_EXPERIENCE_1 | QS2_21_FOCUS_11_1_1 | QS2_21_FOCUS_11_2_2 | QS2_21_FOCUS_11_3_3 | QS2_22_GEOLOCATI1 | QS2_15_RELATIONS2_1_1 | QS2_15_RELATIONS2_2_2 | QS2_15_RELATIONS2_3_3 | QS2_15_RELATIONS2_4_4 | QS2_15_RELATIONS2_5_5 | QS2_15_RELATIONS2_6_6 | QS2_15_RELATIONS2_7_7 | QS2_15_RELATIONS2_8_8 | QS2_15_RELATIONS2_9_9 | QS2_15_RELATIONS2_10_10 | QS2_15_RELATIONS2_11_11 | QS2_15_RELATIONS2_12_12 | QS2_15_RELATIONS2_13_13 | QS2_15_RELATIONS2_14_14 | QS2_15_RELATIONS2_15_15 | QS2_15_RELATIONSHIP2 | QS2_16_FORMAT_2 | QS2_17_TYPE_2 | QS2_17_TYPE_2_Other | QS2_18_LOCATION_2 | QS2_18_LOCATION_2_O | QS2_19_DURATION_2 | QS2_20_EXPERIENCE_2 | QS2_21_FOCUS_21_1_1 | QS2_21_FOCUS_21_2_2 | QS2_21_FOCUS_21_3_3 | QS2_22_GEOLOCATI2 | QS2_15_RELATIONS3_1_1 | QS2_15_RELATIONS3_2_2 | QS2_15_RELATIONS3_3_3 | QS2_15_RELATIONS3_4_4 | QS2_15_RELATIONS3_5_5 | QS2_15_RELATIONS3_6_6 | QS2_15_RELATIONS3_7_7 | QS2_15_RELATIONS3_8_8 | QS2_15_RELATIONS3_9_9 | QS2_15_RELATIONS3_10_10 | QS2_15_RELATIONS3_11_11 | QS2_15_RELATIONS3_12_12 | QS2_15_RELATIONS3_13_13 | QS2_15_RELATIONS3_14_14 | QS2_15_RELATIONS3_15_15 | QS2_15_RELATIONSHIP3 | QS2_16_FORMAT_3 | QS2_17_TYPE_3 | QS2_17_TYPE_3_Other | QS2_18_LOCATION_3 | QS2_18_LOCATION_3_O | QS2_19_DURATION_3 | QS2_20_EXPERIENCE_3 | QS2_21_FOCUS_31_1_1 | QS2_21_FOCUS_31_2_2 | QS2_21_FOCUS_31_3_3 | QS2_22_GEOLOCATI3 | Logic_AP_QS2_23 | QS2_23_MOSTMEANI | QS2_24_MENTORAGE | QS2_25_YOUTHINIT1 | QS2_25_YOUTHINIT2 | QS2_26_INITIATIO1_1_1 | QS2_26_INITIATIO1_2_2 | QS2_26_INITIATIO1_3_3 | QS2_26_INITIATIO1_4_4 | QS2_26_INITIATIO1_5_5 | QS2_26_INITIATIO1_6_6 | QS2_26_INITIATIO1_7_7 | QS2_26_INITIATIO1_8_8 | QS2_26_INITIATIO1_9_9 | QS2_26_INITIATIO1_10_10 | QS2_26_INITIATIO1_11_11 | QS2_26_INITIATIO1_12_12 | QS2_26_INITIATIO1_13_13 | QS2_26_INITIATIO1_14_14 | QS2_26_INITIATIO1_15_15 | QS2_26_INITIATIO1_16_16 | QS2_26_INITIATIO1_17_17 | QS2_26_INITIATIONEV | Logic_QS2_27_Ask | QS2_27_MENTORPROGRA1 | QS2_27_MENTORPROGRA2 | QS2_28_MATCHCHOICE | QS2_29_MATCHCRITERI1_1_1 | QS2_29_MATCHCRITERI1_2_2 | QS2_29_MATCHCRITERI1_3_3 | QS2_29_MATCHCRITERI1_4_4 | QS2_29_MATCHCRITERI1_5_5 | QS2_29_MATCHCRITERI1_6_6 | QS2_29_MATCHCRITERI1_7_7 | QS2_29_MATCHCRITERI1_8_8 | QS2_29_MATCHCRITERI1_9_9 | QS2_29_MATCHCRITERI1_10_10 | QS2_29_MATCHCRITERI1_11_11 | QS2_29_MATCHCRITERIA_O | QS2_30_MATCHSIMILAR1_1_1 | QS2_30_MATCHSIMILAR1_2_2 | QS2_30_MATCHSIMILAR1_3_3 | QS2_30_MATCHSIMILAR1_4_4 | QS2_30_MATCHSIMILAR1_5_5 | QS2_31_MENTORINGREL1_1_1 | QS2_31_MENTORINGREL1_2_2 | QS2_31_MENTORINGREL1_3_3 | QS2_31_MENTORINGREL1_4_4 | QS2_31_MENTORINGREL1_5_5 | QS2_32_MENTORINGENG1_1_1 | QS2_32_MENTORINGENG1_2_2 | QS2_32_MENTORINGENG1_3_3 | QS2_32_MENTORINGENG1_4_4 | QS2_32_MENTORINGENG1_5_5 | QS2_32_MENTORINGENG1_6_6 | QS2_32_MENTORINGENG1_7_7 | QS2_32_MENTORINGENG1_8_8 | QS2_32_MENTORINGENG1_9_9 | QS2_32_MENTORINGENG1_10_10 | QS2_32_MENTORINGENG1_11_11 | QS2_32_MENTORINGENG1_12_12 | QS2_32_MENTORINGENG1_13_13 | QS2_32_MENTORINGENG1_14_14 | QS2_32_MENTORINGENG1_15_15 | QS2_32_MENTORINGENG1_16_16 | QS2_32_MENTORINGENG1_17_17 | QS2_32_MENTORINGENG1_18_18 | QS2_32_MENTORINGENG1_19_19 | QS2_32_MENTORINGENG1_20_20 | QS2_32_MENTORINGENG1_21_21 | QS2_32_MENTORINGENG1_22_22 | QS2_33_TRANSITIONS1_1_1 | QS2_33_TRANSITIONS1_2_2 | QS2_33_TRANSITIONS1_3_3 | QS2_33_TRANSITIONS1_4_4 | QS2_33_TRANSITIONS1_5_5 | QS2_33_TRANSITIONS1_6_6 | QS2_33_TRANSITIONS1_7_7 | QS2_33_TRANSITIONS1_8_8 | QS2_33_TRANSITIONS1_9_9 | QS2_33_TRANSITIONS1_10_10 | QS2_33_TRANSITIONS1_11_11 | QS2_33_TRANSITIONS1_12_12 | QS2_33_TRANSITIONS1_13_13 | QS2_33_TRANSITIONS1_14_14 | QS2_33_TRANSITIONS_Ot | QS2_34_SUPPORTS1_1_1 | QS2_34_SUPPORTS1_2_2 | QS2_34_SUPPORTS1_3_3 | QS2_34_SUPPORTS1_4_4 | QS2_34_SUPPORTS1_5_5 | QS2_34_SUPPORTS1_6_6 | QS2_34_SUPPORTS1_7_7 | QS2_34_SUPPORTS1_8_8 | QS2_34_SUPPORTS1_9_9 | QS2_34_SUPPORTS1_10_10 | QS2_34_SUPPORTS_Ot | Logic_QS2_34_Valid | Logic_QS2_35_Ask | Logic_QS2_35_Mask1_1_1 | Logic_QS2_35_Mask1_2_2 | Logic_QS2_35_Mask1_3_3 | Logic_QS2_35_Mask1_4_4 | Logic_QS2_35_Mask1_5_5 | Logic_QS2_35_Mask1_6_6 | Logic_QS2_35_Mask1_7_7 | Logic_QS2_35_Mask1_8_8 | Logic_QS2_35_Mask1_9_9 | Logic_QS2_35_Mask1_10_10 | QS2_35_SUPPORTSIMPO1_1_1 | QS2_35_SUPPORTSIMPO1_2_2 | QS2_35_SUPPORTSIMPO1_3_3 | QS2_35_SUPPORTSIMPO1_4_4 | QS2_35_SUPPORTSIMPO1_5_5 | QS2_35_SUPPORTSIMPO1_6_6 | QS2_35_SUPPORTSIMPO1_7_7 | QS2_35_SUPPORTSIMPO1_8_8 | QS2_35_SUPPORTSIMPO1_9_9 | QS2_35_SUPPORTSIMPO1_10_10 | QS2_36_INFLUENCE1_1_1 | QS2_36_INFLUENCE1_2_2 | QS2_36_INFLUENCE1_3_3 | QS2_36_INFLUENCE1_4_4 | QS2_36_INFLUENCE1_5_5 | QS2_36_INFLUENCE1_6_6 | QS2_36_INFLUENCE1_7_7 | QS2_36_INFLUENCE1_8_8 | QS2_36_INFLUENCE1_9_9 | QS2_37_HELPFULNESS | QS2_38_NETGATIVEME1_1_1 | QS2_38_NETGATIVEME1_2_2 | QS2_38_NETGATIVEME1_3_3 | QS2_38_NETGATIVEME1_4_4 | QS2_38_NETGATIVEME1_5_5 | QS2_38_NETGATIVEME1_6_6 | QS2_38_NETGATIVEME1_7_7 | QS2_38_NETGATIVEME1_8_8 | QS2_38_NETGATIVEME1_9_9 | QS2_38_NETGATIVEME1_10_10 | QS2_38_NETGATIVEME1_11_11 | QS2_38_NETGATIVEME1_12_12 | QS2_38_NETGATIVEME1_13_13 | QS2_38_NETGATIVEME1_14_14 | QS2_38_NETGATIVEME1_15_15 | QS2_38_NETGATIVEME1_16_16 | QS2_38_NETGATIVEME1_17_17 | QS2_38_NETGATIVEME1_18_18 | QS2_38_NETGATIVEME1_19_19 | QS2_38_NETGATIVEMENTO | QS2_39_NEGATIVEMENT1_1_1 | QS2_39_NEGATIVEMENT1_2_2 | QS2_39_NEGATIVEMENT1_3_3 | QS2_39_NEGATIVEMENT1_4_4 | QS2_39_NEGATIVEMENT1_5_5 | QS2_39_NEGATIVEMENT1_6_6 | QS2_39_NEGATIVEMENT1_7_7 | QS2_39_NEGATIVEMENT1_8_8 | QS2_39_NEGATIVEMENT1_9_9 | QS2_39_NEGATIVEMENT1_10_10 | QS2_39_NEGATIVEMENT1_11_11 | QS2_39_NEGATIVEMENT1_12_12 | QS2_39_NEGATIVEMENT1_13_13 | QS2_39_NEGATIVEMENT1_14_14 | QS2_39_NEGATIVEMENT1_15_15 | QS2_39_NEGATIVEMENT1_16_16 | QS2_39_NEGATIVEMENT1_17_17 | QS2_39_NEGATIVEMENT1_18_18 | QS2_39_NEGATIVEMENT1_19_19 | QS2_39_1_Other | QS_40_REMATCHING_1 | QS2_39_NEGATIVEMENT2_1_1 | QS2_39_NEGATIVEMENT2_2_2 | QS2_39_NEGATIVEMENT2_3_3 | QS2_39_NEGATIVEMENT2_4_4 | QS2_39_NEGATIVEMENT2_5_5 | QS2_39_NEGATIVEMENT2_6_6 | QS2_39_NEGATIVEMENT2_7_7 | QS2_39_NEGATIVEMENT2_8_8 | QS2_39_NEGATIVEMENT2_9_9 | QS2_39_NEGATIVEMENT2_10_10 | QS2_39_NEGATIVEMENT2_11_11 | QS2_39_NEGATIVEMENT2_12_12 | QS2_39_NEGATIVEMENT2_13_13 | QS2_39_NEGATIVEMENT2_14_14 | QS2_39_NEGATIVEMENT2_15_15 | QS2_39_NEGATIVEMENT2_16_16 | QS2_39_NEGATIVEMENT2_17_17 | QS2_39_NEGATIVEMENT2_18_18 | QS2_39_NEGATIVEMENT2_19_19 | QS2_39_2_Other | QS_40_REMATCHING_2 | QS2_39_NEGATIVEMENT3_1_1 | QS2_39_NEGATIVEMENT3_2_2 | QS2_39_NEGATIVEMENT3_3_3 | QS2_39_NEGATIVEMENT3_4_4 | QS2_39_NEGATIVEMENT3_5_5 | QS2_39_NEGATIVEMENT3_6_6 | QS2_39_NEGATIVEMENT3_7_7 | QS2_39_NEGATIVEMENT3_8_8 | QS2_39_NEGATIVEMENT3_9_9 | QS2_39_NEGATIVEMENT3_10_10 | QS2_39_NEGATIVEMENT3_11_11 | QS2_39_NEGATIVEMENT3_12_12 | QS2_39_NEGATIVEMENT3_13_13 | QS2_39_NEGATIVEMENT3_14_14 | QS2_39_NEGATIVEMENT3_15_15 | QS2_39_NEGATIVEMENT3_16_16 | QS2_39_NEGATIVEMENT3_17_17 | QS2_39_NEGATIVEMENT3_18_18 | QS2_39_NEGATIVEMENT3_19_19 | QS2_39_3_Other | QS_40_REMATCHING_3 | QS3_1_GLOBALSELFWOR1_1_1 | QS3_1_GLOBALSELFWOR1_2_2 | QS3_1_GLOBALSELFWOR1_3_3 | QS3_1_GLOBALSELFWOR1_4_4 | QS3_1_GLOBALSELFWOR1_5_5 | QS3_1_GLOBALSELFWOR1_6_6 | QS3_1_GLOBALSELFWOR1_7_7 | QS3_1_GLOBALSELFWOR1_8_8 | QS3_2_TRANSITIONWIT1_1_1 | QS3_2_TRANSITIONWIT1_2_2 | QS3_2_TRANSITIONWIT1_3_3 | QS3_2_TRANSITIONWIT1_4_4 | QS3_2_TRANSITIONWIT1_5_5 | QS3_2_TRANSITIONWIT1_6_6 | QS3_2_TRANSITIONWIT1_7_7 | QS3_2_TRANSITIONWIT1_8_8 | QS3_2_TRANSITIONWIT1_9_9 | QS3_2_TRANSITIONWIT1_10_10 | QS3_2_TRANSITIONWIT1_11_11 | QS3_2_TRANSITIONWIT1_12_12 | QS3_2_TRANSITIONWIT1_13_13 | QS3_2_TRANSITIONWITHOUTMEN | QS3_3_TRANSITIONSWI1_1_1 | QS3_3_TRANSITIONSWI1_2_2 | QS3_3_TRANSITIONSWI1_3_3 | QS3_3_TRANSITIONSWI1_4_4 | QS3_3_TRANSITIONSWI1_5_5 | QS3_3_TRANSITIONSWI1_6_6 | QS3_3_TRANSITIONSWI1_7_7 | QS3_3_TRANSITIONSWI1_8_8 | QS3_3_TRANSITIONSWI1_9_9 | QS3_3_TRANSITIONSWI1_10_10 | QS3_3_TRANSITIONSWI1_11_11 | QS3_3_TRANSITIONSWI1_12_12 | QS3_3_TRANSITIONSWI1_13_13 | QS3_3_TRANSITIONSWI1_14_14 | QS3_3_TRANSITIONSWI1_15_15 | QS3_3_TRANSITIONSWI1_16_16 | QS3_3_TRANSITIONSWI1_17_17 | QS3_3_TRANSITIONSWITHOUTMENTO | QS3_4_LIFEEVENTS1_1_1 | QS3_4_LIFEEVENTS1_2_2 | QS3_4_LIFEEVENTS1_3_3 | QS3_4_LIFEEVENTS1_4_4 | QS3_4_LIFEEVENTS1_5_5 | QS3_4_LIFEEVENTS1_6_6 | QS3_4_LIFEEVENTS1_7_7 | QS3_4_LIFEEVENTS1_8_8 | QS3_4_LIFEEVENTS1_9_9 | QS3_4_LIFEEVENTS1_10_10 | QS3_4_LIFEEVENTS1_11_11 | QS3_4_LIFEEVENTS1_12_12 | QS3_4_LIFEEVENTS1_13_13 | QS3_4_LIFEEVENTS1_14_14 | QS3_4_LIFEEVENTS1_15_15 | QS3_4_LIFEEVENTS1_16_16 | QS3_4_LIFEEVENTS1_17_17 | QS3_4_LIFEEVENTS1_18_18 | QS3_4_LIFEEVENTS1_19_19 | QS3_4_LIFEEVENTS1_20_20 | QS3_5_SCHOOLCLIMATE1_1_1 | QS3_5_SCHOOLCLIMATE1_2_2 | QS3_5_SCHOOLCLIMATE1_3_3 | QS3_5_SCHOOLCLIMATE1_4_4 | QS3_5_SCHOOLCLIMATE1_5_5 | QS3_5_SCHOOLCLIMATE1_6_6 | QS3_5_SCHOOLCLIMATE1_7_7 | QS3_5_SCHOOLCLIMATE1_8_8 | QS3_5_SCHOOLCLIMATE1_9_9 | QS3_5_SCHOOLCLIMATE1_10_10 | QS4_1_MEANINGFULPERSON | QS4_2_MEANINGFULPERSON | QS4_3_CAREERPLANNIN1_1_1 | QS4_3_CAREERPLANNIN1_2_2 | QS4_3_CAREERPLANNIN1_3_3 | QS4_3_CAREERPLANNIN1_4_4 | QS4_3_CAREERPLANNIN1_5_5 | QS4_3_CAREERPLANNIN1_6_6 | QS4_3_CAREERPLANNIN1_7_7 | QS4_3_CAREERPLANNIN1_8_8 | QS4_4_EDUCATIONALEXPEC | QS4_4_Other | QS4_5_SATEDU | QS4_5_SATEDU_Other | QS4_6_DISAPPOINTED | QS4_7_SOCIALCAPITAL1_1_1 | QS4_7_SOCIALCAPITAL1_2_2 | QS4_7_SOCIALCAPITAL1_3_3 | QS4_7_SOCIALCAPITAL1_4_4 | QS4_8_HELPSEEKING1_1_1 | QS4_8_HELPSEEKING1_2_2 | QS4_8_HELPSEEKING1_3_3 | QS4_8_HELPSEEKING1_4_4 | QS4_8_HELPSEEKING1_5_5 | QS4_8_HELPSEEKING1_6_6 | QS4_8_HELPSEEKING1_7_7 | QS4_8_HELPSEEKING1_8_8 | QS4_8_HELPSEEKING1_9_9 | QS4_8_HELPSEEKING1_10_10 | QS4_9_MENTALHEALTH | QS4_10_MENTALWELLBE1_1_1 | QS4_10_MENTALWELLBE1_2_2 | QS4_10_MENTALWELLBE1_3_3 | QS4_10_MENTALWELLBE1_4_4 | QS4_10_MENTALWELLBE1_5_5 | QS4_10_MENTALWELLBE1_6_6 | QS4_10_MENTALWELLBE1_7_7 | QS4_11_BELONGING | QS4_12_TRUST1_1_1 | QS4_12_TRUST1_2_2 | QS4_12_TRUST1_3_3 | QS4_12_TRUST1_4_4 | QS4_12_TRUST1_5_5 | QS4_13_LIFEEVE1_1_1 | QS4_13_LIFEEVE1_2_2 | QS4_13_LIFEEVE1_3_3 | QS4_13_LIFEEVE1_4_4 | QS4_13_LIFEEVE1_5_5 | QS4_13_LIFEEVE1_6_6 | QS4_14_FORMALVOL | QS4_14_Validatio | QS4_15_TIMEIFFOR1 | QS4_15_TIMEIFFOR2 | QS4_15_TIMEIFFOR3 | QS4_15_TIMEIFFOR4 | QS4_15_Validatio | QS4_16_FORMALVOL | QS4_17_SERVEDASM | QS4_18_CURRENTOR | QS4_19_CURRENTME1 | QS4_19_CURRENTME2 | QS4_19_CURRENTME3 | QS4_19_Validatio | QS4_20_MENTEEAGE | QS4_21_MENTORING | QS4_22_PASTMENTO | QS4_23_PASTFORMA1 | QS4_23_PASTFORMA2 | QS4_23_PASTFORMA3 | QS4_23_Validatio | QS4_23_MENTEEAGE | QS4_24_FUTUREMEN | QS4_25_FUTUREMEN | QS4_26_INTERNETC | QS4_27_INTERNETC1_1_1 | QS4_27_INTERNETC1_2_2 | QS4_27_INTERNETC1_3_3 | QS4_27_INTERNETC1_4_4 | QS4_28_INTERNETCON | QS4_29_PRIVATECONN | QS4_30_INTERNETCON | QS4_31_MOBILECONNE | QS4_32_MOBILECONNE1_1_1 | QS4_32_MOBILECONNE1_2_2 | QS4_32_MOBILECONNE1_3_3 | QS4_32_MOBILECONNE1_4_4 | QS4_33_MOBILECONNECT | QS1_8_NEWCOMERYEAR_cat | QS2_10_NUMBEROFME_cat | Global_selfworth_total | Future_interest_mentor | Q38_LIFEEVENTS_1 | Q38_LIFEEVENTS_2 | Q38_LIFEEVENTS_3 | Q38_LIFEEVENTS_4 | Q38_LIFEEVENTS_5 | Q38_LIFEEVENTS_6 | Q38_LIFEEVENTS_7 | Q38_LIFEEVENTS_8 | Q38_LIFEEVENTS_9 | Q38_LIFEEVENTS_10 | Q38_LIFEEVENTS_11 | Q38_LIFEEVENTS_12 | Q38_LIFEEVENTS_13 | Q38_LIFEEVENTS_14 | Q38_LIFEEVENTS_15 | Q38_LIFEEVENTS_16 | Q38_LIFEEVENTS_17 | Q38_LIFEEVENTS_18 | Q38_LIFEEVENTS_19 | Q38_LIFEEVENTS_20 | Q49_LIFEEVENTS_1 | Q49_LIFEEVENTS_2 | Q49_LIFEEVENTS_3 | Q49_LIFEEVENTS_4 | Q49_LIFEEVENTS_5 | Q49_LIFEEVENTS_6 | QS1_4_INDIGENOUS_cat | QS1_6_ETHNOCULTURAL1_cat | Q49_LIFEEVENTS_Riskfactors | Q49_LIFEEVENTS_Riskfactors_cat | Q38_Risk_factors | Q38_Risk_factors_cat | QS1_9_GENDER1_cat | Mentor_Age12 | sexo_straight | QS1_11_SEXUALO_cat | QS1_22_HIGHESTEDU_cat | QS1_25_EMPLOYMENT_cat | QS4_9_MENTALHEALTH_cat | QS4_11_BELONGING_cat | QS1_12_DISABIL_cat | QS1_13_DISABIL_cat | QS1_19_HIGHSCHOOL_cat | QS1_21_FURTHEDUC_cat | QS1_3_COMMUNITYTYPE_cat | QS1_3_COMMUNITYTYPE_cat2 | QS2_1_MEANINGFULP_cat | QS2_2_MEANINGFULP_cat | QS2_3_PRESENCEOFM_cat | QS2_4_MENTOR61FOR_cat | QS2_6_MENTOREXPER_cat | QS4_17_SERVEDASM_cat | QS4_18_CURRENTOR_cat | QS4_25_FUTUREMEN_cat | QS4_24_FUTUREMEN_cat | QS1_7_NEWCOMER_cat | Month_income | Semimonth_income | Biweek_income | Week_income | QS1_28_EMPLOYMENT_calculated | QS2_16_FORMAT_any | Anymentor_ages618 | Anyformalm_ages618 | QS2_8_UNMETNEED61_cat | QS2_12_UNMETNEED1_cat | QS1_10_TRANSUM_cat | QS2_20_EXPERIENCE_mostmeaningful | QS2_20_EXPERIENCE_cat | QS4_3_CAREERPLANNIN1_total | QS4_7_SOCIALCAPITAL1_total | QS2_16_FORMAT_mostmeaningful | Any_unmetneed_6to18 | Q_RELATIONSHIP1_mostmeaningful | Q_RELATIONSHIP2_mostmeaningful | Q_RELATIONSHIP3_mostmeaningful | Q_RELATIONSHIP4_mostmeaningful | Q_RELATIONSHIP5_mostmeaningful | Q_RELATIONSHIP6_mostmeaningful | Q_RELATIONSHIP7_mostmeaningful | Q_RELATIONSHIP8_mostmeaningful | Q_RELATIONSHIP9_mostmeaningful | Q_RELATIONSHIP10_mostmeaningful | Q_RELATIONSHIP11_mostmeaningful | Q_RELATIONSHIP12_mostmeaningful | Q_RELATIONSHIP13_mostmeaningful | Q_RELATIONSHIP14_mostmeaningful | QS2_17_TYPE_mostmeaningful | QS2_18_LOCATION_mostmeaningful | QS2_19_DURATION_mostmeaningful | Q_FOCUS1_mostmeaningful | Q_FOCUS2_mostmeaningful | Q_FOCUS3_mostmeaningful | Q_GEOLOCAT_mostmeaningful | QS1_17_INCARE_cat | QS4_5_SATEDU_cat | Q46_MENTALWELLBEING_total | QS2_25_YOUTHINIT1_cat | Age_2year | Age_census_year | Q38_Risk_factors_cat2 | QS1_1_AGE_cat | Birth_year | Arrival_age | Arrival_age_cat | Immigrant_exclude | Age_5year | QS1_9_gender | yearly_from_month | yearly_from_seimimonth | yearly_from_biweek | yearly_from_week | total_yearly_income |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ECR-vlt6-982170254 | 11-Feb-20 | 05:25:00 | 21 | 2 | 2 | NA | 2 | 1 | 3 | NA | 2 | 1 | NA | 3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | en_US | NA | 21 | 1 | Alberta | 1 | Urban | I don’t identify as a member of these communities | NA | You may belong to one or more racial or cultural groups on the following list Check all that apply | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | NA | Yes | NA | NA | 1 | 0 | 0 | 0 | 0 | 0 | NA | No | Heterosexual | NA | No | NA | NA | NA | NA | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 5 | NA | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Yes | 14 | Yes | Other, please specify: | still in university | 2019 | Studying or in education/training | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Yes | Yes | Unsure | NA | NA | NA | NA | 2 | Yes | Yes | 3 | 1 | NA | No | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | shsh | sh | mm | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | No | 1 | NA | 2 | NA | 4 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | No | 1 | NA | 2 | NA | 3 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | No | 1 | NA | 2 | NA | 5 | 2 | 1 | 1 | 1 | 1 | NA | 1 | 3-5 years older than me | Someone else put us in touch | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 | 2 | 3 | 3 | 2 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | No | Yes | No | No | No | No | No | No | Yes | Yes | No | No | No | No | NA | Very true | Very true | Very true | Very true | Very true | Very true | Very true | Very true | Very true | 3 | he supported me | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | A lot | A lot | A lot | A lot | A lot | A lot | A lot | A lot | A lot | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | NA | Unsure | Unsure | Unsure | Unsure | Unsure | Unsure | Unsure | Unsure | NA | NA | University diploma or certificate BELOW Bachelor’s Degree | NA | 1 | Neutral | Neutral | Neutral | Neutral | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | Good | 3 | 3 | 3 | 3 | 3 | 3 | 3 | Somewhat strong | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 100 | NA | NA | NA | 1 | 1 | No | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Fairly interested | Both | 1 | 1 | 1 | 0 | 0 | 2 | 1 | NA | 1 | 1 | 1 | 0 | 0 | 1 | NA | 1 to 5 | 23 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Not Indigenous | NA | 0 | No Risk factors | 0 | No Risk factors | Woman | Yes mentor | NA | Heterosexual | NA | Studying and/ or working | Good/ Excellent | Strong/ somewhat strong | No | NA | Yes | Yes | Urban/Sub | 1 | Yes | Yes | NA | NA | NA | No | NA | Formal or both | Very/ Fairly interested | Yes | NA | NA | NA | NA | NA | No | Yes | No | Yes | No | No | Mostly positive | Positive experience | 32 | 12 | No | Yes | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | One-on-one | In community | 12+ months | 1 | 0 | 1 | Yes | No | Some university or more | 21 | Non-youth initiated | 21 to 22 | 2 | 0 or 1 risk factor | 18-21 | 1999 | NA | NA | Not immigrant or <=18 at arrival | 18 to 24 | QS1_9_GENDER1_1_1 | 0 | 0 | 0 | 0 | 0 |
1 | ECR-vlt6-625172748 | 11-Feb-20 | 10:53:00 | 22 | 2 | 2 | NA | 1 | 1 | 1 | NA | 5 | 9 | NA | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | en_US | NA | 22 | 1 | Ontario | 1 | Suburban | Métis | 1 | You may also belong to one or more racial or cultural groups on the following list Check all that apply | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | NA | Yes | NA | NA | 1 | 0 | 0 | 0 | 0 | 0 | NA | No | Asexual | NA | Yes | No | 13 | 1 | 9 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | NA | NA | 5 | NA | 4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 9 | NA | NA | NA | NA | NA | Yes | 9 | Yes | University diploma or certificate BELOW Bachelor’s Degree | NA | 2019 | Working (paid work for at least 1 hr/week) | NA | NA | NA | NA | NA | Monthly | NA | NA | 10000 | 1 | NA | NA | NA | NA | NA | NA | Yes | No | Yes | No | NA | NA | Always positive | NA | Yes | No | NA | NA | 1 | Yes | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | NA | 1 | 1 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 1 | 2 | 3 | 3 | 3 | 3 | NA | Agree | Somewhat agree | Agree | Somewhat agree | Somewhat disagree | Somewhat agree | Somewhat agree | Agree | NA | NA | Master’s degree (e.g. M.B.A., M.A., M.Sc.) | NA | 1 | Disagree | Agree | Disagree | Strongly Agree | 3 | 4 | 5 | 1 | 2 | 5 | 2 | 3 | 2 | 3 | Good | 1 | 2 | 4 | 2 | 3 | 5 | 3 | Somewhat weak | 2 | 2 | 3 | 1 | 3 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | 1 | NA | NA | 1 | NA | 1 | 2 | Yes, and I am currently a mentor | Informal | NA | NA | NA | NA | Under 18 years old | 1 | NA | NA | NA | NA | NA | NA | Fairly interested | Both | 1 | 1 | 1 | 0 | 0 | 1 | 1 | NA | 1 | 1 | 1 | 0 | 0 | 3 | NA | NA | 16 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Indigenous | White only | 1 | 1 or more risk factors | 6 | 1 or more risk factors | Woman | No mentor | NA | Other | Some university or more | Studying and/ or working | Good/ Excellent | Weak/ somewhat weak | Yes | No | Yes | Yes | Urban/Sub | 1 | Yes | No | Yes | No | Positive experience | Yes | Informal only | Formal or both | Very/ Fairly interested | Yes | 120000 | NA | NA | NA | 120000 | NA | Yes | No | Yes | Yes | No | NA | NA | 41 | 13 | NA | Yes | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | No | Some university or more | 20 | NA | 21 to 22 | 2 | 2 or more risk ractors | 22-25 | 1998 | NA | NA | Not immigrant or <=18 at arrival | 18 to 24 | QS1_9_GENDER1_1_1 | 1440000 | 0 | 0 | 0 | 1440000 |
2 | ECR-vlt6-416523871 | 8-Feb-20 | 46:03:00 | 22 | 2 | 1 | NA | 2 | 5 | 3 | NA | 7 | 6 | NA | 4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | en_US | NA | 21 | 1 | Yukon | 1 | Remote | First Nations (North American Indian) | 4 | You may also belong to one or more racial or cultural groups on the following list Check all that apply | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | NA | Prefer not to answer | NA | NA | 1 | 0 | 0 | 0 | 0 | 0 | NA | Prefer not to answer | Gay | NA | No | NA | NA | NA | NA | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Prefer not to answer | NA | No | NA | NA | NA | Studying or in education/training | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | No | Unsure | No | NA | NA | NA | NA | 1 | Unsure | No | NA | NA | 3 | No | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 | 3 | 1 | 4 | 1 | 4 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 1 | 2 | 3 | 2 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 4 | 3 | 3 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 4 | 3 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | Agree | Somewhat agree | Unsure | Disagree | Completely disagree | Agree | Completely agree | Completely agree | NA | NA | Certificate of Apprenticeship or Certificate of Qualification | NA | 3 | Strongly disagree | Strongly Agree | Strongly disagree | Neutral | 1 | 5 | 5 | 1 | 3 | 2 | 2 | 5 | 1 | 4 | Excellent | 1 | 1 | 2 | 2 | 5 | 3 | 5 | Don’t know | 1 | 3 | 1 | 4 | 5 | 1 | 2 | 2 | 1 | 4 | 3 | 0 | 1 | NA | NA | NA | NA | NA | NA | Yes, and I am currently a mentor | Formal | NA | 0 | 1 | 1 | Unsure | 1 | NA | NA | NA | NA | NA | NA | Fairly interested | Both | 3 | NA | NA | NA | NA | NA | NA | NA | 4 | NA | NA | NA | NA | NA | NA | NA | 21 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | Indigenous | White only | 2 | 1 or more risk factors | 6 | 1 or more risk factors | Woman | No mentor | NA | Other | NA | Studying and/ or working | Good/ Excellent | NA | No | NA | NA | No | Rural/remote | 3 | No | NA | No | NA | NA | Yes | Formal or both | Formal or both | Very/ Fairly interested | NA | NA | NA | NA | NA | NA | NA | No | NA | NA | No | NA | NA | NA | 38 | 10 | NA | No | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | No | Less than University | 19 | NA | 21 to 22 | 2 | 2 or more risk ractors | 18-21 | 1999 | NA | NA | Not immigrant or <=18 at arrival | 18 to 24 | QS1_9_GENDER1_1_1 | 0 | 0 | 0 | 0 | 0 |
3 | ECR-vlt6-933655693 | 11-Feb-20 | 30:28:00 | 18 | 2 | 2 | NA | 1 | 1 | 2 | NA | 1 | 2 | NA | 3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | en_US | NA | 18 | 1 | British Columbia | 1 | Urban | I don’t identify as a member of these communities | NA | You may belong to one or more racial or cultural groups on the following list Check all that apply | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | NA | No | 2018 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | NA | No | Bisexual, pansexual, or queer | NA | Yes | Yes | 15 | 1 | 17 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 9 | NA | 11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Yes | 17 | Yes | Unsure | NA | 2019 | Neither of the above | NA | 1 | NA | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | No | Yes | No | NA | NA | NA | NA | 2 | No | Yes | 1 | 1 | NA | No | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | bark | NA | NA | 1 | NA | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | NA | No | 2 | NA | 2 | NA | 4 | 2 | 1 | 0 | 0 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | More than 6 years older than me | Someone else put us in touch | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 | 3 | 3 | 2 | 1 | 5 | 3 | 2 | 3 | 5 | 3 | 3 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 2 | 3 | Yes | No | Yes | No | No | No | No | No | No | No | No | No | No | No | NA | Not very true | Very true | Very true | Not very true | Not very true | Very true | Very true | Sometimes true | Not very true | 2 | na | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | A little | Some | A lot | A lot | A little | A lot | A lot | Quite a bit | Some | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 | 3 | 2 | 1 | 4 | 4 | 4 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 2 | 3 | 3 | NA | Completely disagree | Completely agree | Completely disagree | Completely disagree | Completely agree | Disagree | Completely disagree | Completely disagree | 5 | NA | University diploma or certificate BELOW Bachelor’s Degree | NA | 2 | Disagree | Strongly Agree | Strongly Agree | Strongly Agree | 3 | 4 | 1 | 2 | 1 | 5 | 1 | 5 | 2 | 2 | Fair | 2 | 2 | 2 | 1 | 2 | 5 | 5 | Somewhat weak | 1 | 3 | 5 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 6 | NA | NA | NA | 1 | 2 | No | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Not that interested | Informal | 1 | 1 | 1 | 0 | 0 | 1 | 2 | NA | 1 | 1 | 1 | 0 | 0 | 1 | 2016 to 2020 | 1 to 5 | 23 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | Not Indigenous | White only | 1 | 1 or more risk factors | 2 | 1 or more risk factors | Woman | Yes mentor | NA | Other | NA | Not in employ or edu | Poor or fair | Weak/ somewhat weak | Yes | Yes | Yes | Yes | Urban/Sub | 1 | No | Yes | No | NA | NA | No | NA | Informal only | Not interested | No | NA | NA | NA | NA | NA | No | Yes | No | No | No | No | Mostly positive | Positive experience | 21 | 17 | No | No | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | With other youth | In community | 12+ months | 1 | 0 | 0 | No | No | Some university or more | 19 | Non-youth initiated | 18 to 20 | 1 | 2 or more risk ractors | 18-21 | 2002 | 16 | 12-18 | Not immigrant or <=18 at arrival | 18 to 24 | QS1_9_GENDER1_1_1 | 0 | 0 | 0 | 0 | 0 |
4 | ECR-vlt6-780412096 | 11-Feb-20 | 35:51:00 | 24 | 2 | 2 | NA | 2 | 1 | 1 | NA | 2 | 1 | NA | 7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | en_US | NA | 23 | 1 | Alberta | 1 | Suburban | I don’t identify as a member of these communities | NA | You may belong to one or more racial or cultural groups on the following list Check all that apply | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | NA | Yes | NA | NA | 1 | 0 | 0 | 0 | 0 | 0 | NA | No | Heterosexual | NA | No | NA | NA | NA | NA | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 9 | NA | 11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Yes | 5 | Yes | Bachelor’s degree (e.g. BA, BSc, B.Ed., B.Eng including LL.B-law degree) | NA | 2017 | Working (paid work for at least 1 hr/week) | NA | NA | NA | NA | NA | Yearly | 89000 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | Unsure | Yes | Unsure | NA | NA | NA | NA | 3 | No | Unsure | NA | NA | 3 | Unsure | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | Agree | Agree | Agree | Agree | Agree | Agree | Agree | Agree | NA | NA | Master’s degree (e.g. M.B.A., M.A., M.Sc.) | NA | 1 | Agree | Agree | Agree | Agree | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | Excellent | 3 | 4 | 4 | 4 | 4 | 3 | 5 | Somewhat strong | 5 | 3 | 3 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 24 | NA | NA | NA | 1 | 3 | Yes, I have been a mentor but am not currently a mentor | NA | NA | NA | NA | NA | NA | 2 | 2 | NA | NA | NA | NA | 1 | Fairly interested | Unsure | 1 | 0 | 0 | 1 | 0 | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | 25 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Not Indigenous | White only | 0 | No Risk factors | 1 | 1 or more risk factors | Woman | NA | NA | Heterosexual | Some university or more | Studying and/ or working | Good/ Excellent | Strong/ somewhat strong | No | NA | Yes | Yes | Urban/Sub | 1 | NA | Yes | NA | NA | NA | Yes | NA | NA | Very/ Fairly interested | Yes | NA | NA | NA | NA | 89000 | NA | NA | NA | No | NA | No | NA | NA | 48 | 16 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | No | Some university or more | 27 | NA | 23 to 24 | 2 | 0 or 1 risk factor | 22-25 | 1997 | NA | NA | Not immigrant or <=18 at arrival | 18 to 24 | QS1_9_GENDER1_1_1 | 0 | 0 | 0 | 0 | 0 |
5 | ECR-vlt6-197730841 | 6-Feb-20 | 15:10:00 | 23 | 2 | 2 | T2N | 2 | 1 | 1 | 2 | 2 | 1 | 825 | 3 | NA | 1 | NA | 1 | NA | NA | NA | NA | NA | NA | NA | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | en_US | CA | 23 | 1 | Alberta | 1 | Urban | Métis | 2 | You may also belong to one or more racial or cultural groups on the following list Check all that apply | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | Yes | NA | NA | 1 | 0 | 0 | 0 | 0 | 0 | NA | No | Bisexual, pansexual, or queer | NA | Yes | Yes | 13 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Yes | 12 | No | NA | NA | NA | Working (paid work for at least 1 hr/week) | NA | NA | NA | NA | NA | Bi-weekly | NA | NA | NA | NA | NA | NA | 1000 | 1 | NA | NA | Yes | Yes | Unsure | NA | NA | NA | NA | 2 | No | Yes | 1 | 1 | NA | Yes | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | NA | MrL | MissM | Mom | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | Yes | 3 | NA | 4 | Outside somewhere don’t remember | 4 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | No | 1 | NA | 1 | NA | 4 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | My mom | No | 1 | NA | 4 | At home | 5 | 2 | 1 | 0 | 1 | 1 | NA | 2 | More than 6 years older than me | The mentor did | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3 | 2 | 2 | 3 | 2 | 4 | 4 | 3 | 4 | 4 | 3 | 3 | 2 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | Yes | Yes | No | No | Yes | No | No | No | No | No | No | No | No | No | NA | Sometimes true | Not very true | Not very true | Sometimes true | Sometimes true | Not very true | Not very true | Not very true | Sometimes true | 1 | Idk | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 4 | 2 | 3 | 1 | 1 | 3 | 2 | 1 | Quite a bit | A little | Some | A little | Quite a bit | Quite a bit | A lot | Quite a bit | Quite a bit | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 1 | 2 | 2 | 1 | 3 | 3 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 3 | 2 | 3 | NA | Unsure | Unsure | Unsure | Unsure | Unsure | Agree | Unsure | Unsure | NA | NA | University diploma or certificate ABOVE Bachelor’s Degree | NA | 1 | Neutral | Neutral | Neutral | Neutral | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | Fair | 3 | 4 | 3 | 3 | 2 | 3 | 3 | Somewhat weak | 4 | 3 | 4 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 1 | NA | NA | NA | NA | NA | NA | No | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Fairly interested | Unsure | 1 | 1 | 1 | 0 | 0 | 1 | 1 | NA | 1 | 1 | 1 | 0 | 0 | 1 | NA | 1 to 5 | 16 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | Indigenous | Non-white or combination | 2 | 1 or more risk factors | 5 | 1 or more risk factors | Woman | Yes mentor | NA | Other | NA | Studying and/ or working | Poor or fair | Weak/ somewhat weak | Yes | Yes | Yes | No | Urban/Sub | 1 | Yes | Yes | NA | NA | NA | No | NA | NA | Very/ Fairly interested | Yes | NA | NA | 24000 | NA | 24000 | Yes | Yes | Yes | No | Yes | No | Always positive | Positive experience | 34 | 12 | No | Yes | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | One-on-one | At School | 12+ months | 1 | 1 | 1 | Yes | No | Some university or more | 21 | Non-youth initiated | 23 to 24 | 2 | 2 or more risk ractors | 22-25 | 1997 | NA | NA | Not immigrant or <=18 at arrival | 18 to 24 | QS1_9_GENDER1_1_1 | 0 | 0 | 624000 | 0 | 624000 |
1.2.1 Histograms to examine distributions:
1.2.1.1 Total estimated yearly income:
ggplot(youth, aes(x = total_yearly_income)) +
geom_histogram() +
scale_y_log10() +
labs(title = "Distribution of total estimated yearly income",
x = "Estimate Total Yearly Income ($)") +
theme_minimal()
1.2.1.2 Frequency count of each gender identity (QS1_9_gender
):
ggplot(youth, aes(x = QS1_9_gender, fill = QS1_9_gender)) +
geom_bar() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
1.2.1.3 Compare gender identity to estimated yearly total income (total_yearly_income
):
ggplot(youth, aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
geom_bar(stat = "identity") +
labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
ggplot(youth, aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
geom_boxplot() +
labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
|>
youth filter(total_yearly_income < 29380) |>
ggplot( aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
geom_bar(stat = "identity", position = "dodge") +
labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
|>
youth filter(total_yearly_income < 29380) |>
ggplot( aes(x = QS1_9_gender, y = total_yearly_income, fill = QS1_9_gender)) +
geom_bar(stat = "identity", position = "stack") +
labs(x = "Gender Indentity", y = "Total estimated yearly income ($)") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
1.2.1.4 Comparing further education (QS1_21_FURTHEDUCA
) and current income:
ggplot(youth, aes(x = QS1_21_FURTHEDUCA, y = total_yearly_income, fill = QS1_9_gender)) +
geom_boxplot(outliers = FALSE) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
1.2.1.5 Remove outlier in
no
group by removing the observations withtotal_yearly_income
$29,380, the low-income for an individual person in 2024 in canada.
|>
youth filter(total_yearly_income < 29380) |>
ggplot(aes(x = QS1_21_FURTHEDUCA, y = total_yearly_income, fill = QS1_9_gender)) +
geom_bar(stat = "identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
1.2.1.6 Visualize Mental health outcome QS4_9_MENTALHEALTH
(or QS4_9_MENTALHEALTH_cat
) / QS4_11_BELONGING
depending on early mentee experience (QS2_3_PRESENCEOFM_cat
or QS2_3_PRESENCEOFM
)
|>
youth filter(!is.na(QS4_9_MENTALHEALTH_cat)) |>
drop_na(QS2_3_PRESENCEOFM_cat) |>
ggplot(aes(x = QS2_3_PRESENCEOFM_cat, fill = QS4_9_MENTALHEALTH_cat)) +
geom_bar(position = "dodge") +
labs(x = "Early life mentor experience (age 6-11 years old)", fill = "Current Mental Health Rating")
|>
youth filter(!is.na(QS4_9_MENTALHEALTH_cat)) |>
drop_na(QS2_3_PRESENCEOFM_cat) |>
ggplot(aes(x = QS2_3_PRESENCEOFM_cat, fill = QS4_9_MENTALHEALTH_cat)) +
geom_bar(position = "fill") +
labs(x = "Early life mentor experience (age 6-11 years old)", fill = "Current Mental Health Rating")
1.3 Python: Visualization
1.3.0.1 Remove unesscary columns and indicate text columns
= youth.iloc[:, 41:]
df_dropped
# drop logic and validation columns
= df_dropped.drop(columns=['QAge_Validation', 'Logic_QS1_6_Qtext', 'Logic_Qtext', 'QS1_8_Validation', 'Logic_QS1_26_Ask', 'QS1_29_Validation',
df_dropped 'QS1_30_MValidatio', 'QS1_30_SMValidati', 'QS1_31_BWValidati', 'QS1_32_WValidatio', 'QS2_10_Validation', 'Logic_QS2_14_Ask','Logic_MENTORID1_1_1',
'Logic_MENTORID1_2_2', 'Logic_MENTORID1_3_3', 'Logic_AP_QS2_23', 'Logic_QS2_27_Ask', 'Logic_QS2_34_Valid', 'Logic_QS2_35_Ask', 'Logic_QS2_35_Mask1_1_1',
'Logic_QS2_35_Mask1_2_2', 'Logic_QS2_35_Mask1_3_3', 'Logic_QS2_35_Mask1_4_4', 'Logic_QS2_35_Mask1_5_5', 'Logic_QS2_35_Mask1_6_6', 'Logic_QS2_35_Mask1_7_7',
'Logic_QS2_35_Mask1_8_8', 'Logic_QS2_35_Mask1_9_9', 'Logic_QS2_35_Mask1_10_10', 'QS4_14_Validatio', 'QS4_15_Validatio', 'QS4_19_Validatio', 'QS4_23_Validatio'
])
= ['QS1_6_Other', 'QS1_9_Other', 'QS1_11_Other', 'QS1_16_Other', 'QS1_18_Other_1', 'QS1_18_Other_2', 'QS1_18_Other_3', 'QS1_18_Other_4', 'QS1_18_Other_5', 'QS1_18_Other_6', 'QS1_18_Other_7', 'QS1_18_Other_8', 'QS1_18_Other_9', 'QS1_18_Other_10',
text_columns 'QS1_18_Other_11', 'QS1_22_Other', 'QS1_26_Other', 'QS1_27_Other', 'QS2_13_Other', 'QS2_14_MENTORID', 'QS2_14_MENTORID_2', 'QS2_14_MENTORID_3', 'QS2_18_LOCATION_1_O', 'QS2_15_RELATIONSHIP2', 'QS2_17_TYPE_2_Other', 'QS2_18_LOCATION_2_O', 'QS2_15_RELATIONSHIP3',
'QS2_17_TYPE_3_Other', 'QS2_18_LOCATION_3_O', 'QS2_25_YOUTHINIT2', 'QS2_27_MENTORPROGRA2', 'QS2_33_TRANSITIONS_Ot', 'QS2_34_SUPPORTS_Ot', 'QS2_38_NETGATIVEMENTO', 'QS3_2_TRANSITIONWITHOUTMEN', 'QS3_3_TRANSITIONSWITHOUTMENTO', 'QS4_4_Other', 'QS4_5_SATEDU_Other']
1.3.0.2 Plot a histogram of age
'QS1_1_AGE'].plot.hist(bins=10, edgecolor='black') df_dropped[
<Axes: ylabel='Frequency'>
'Age') plt.xlabel(
Text(0.5, 0, 'Age')
'Frequency') plt.ylabel(
Text(0, 0.5, 'Frequency')
'Histogram of Age') plt.title(
Text(0.5, 1.0, 'Histogram of Age')
plt.show()
1.3.0.3 Table of observations for each province/territory
= df_dropped['QS1_2_PROV'].value_counts()
province_counts print(province_counts)
QS1_2_PROV
Ontario 1097
Quebec 610
Alberta 353
British Columbia 347
Manitoba 95
Saskatchewan 87
New Brunswick 67
Nova Scotia 60
Outside of Canada 37
Newfoundland and Labrador 33
Prefer not to say 21
Prince Edward Island 14
Unsure 7
Yukon 6
Northwest Territories 3
Nunavut 1
Name: count, dtype: int64
1.3.0.4 Employment counts for indigenous status
'QS1_25_EMPLOYMENT_abrivated'] = youth['QS1_25_EMPLOYMENT'].replace({
youth['Working (paid work for at least 1 hr/week)': 'Working',
'Studying or in education/training': 'Studying',
'Neither of the above': 'Neither',
'Both': 'Both'
})
'QS1_4_INDIGENOUS_abrivated'] = youth['QS1_4_INDIGENOUS'].replace({
youth["I don't identify as a member of these communities": 'Non-Indigenous',
'First Nations (North American Indian)': 'First Nations',
'Prefer not to say': 'Prefer not to say',
'Unsure': 'Unsure',
'Métis': 'Métis',
'Inuk (Inuit)': 'Inuk'
})
= pd.crosstab(youth['QS1_4_INDIGENOUS_abrivated'], youth['QS1_25_EMPLOYMENT_abrivated'])
table print(table)
QS1_25_EMPLOYMENT_abrivated Both Neither Studying Working
QS1_4_INDIGENOUS_abrivated
First Nations 23 29 38 85
Inuk 2 1 2 8
Métis 14 19 14 59
Non-Indigenous 263 293 503 1254
Prefer not to say 12 36 30 33
Unsure 20 23 29 48
1.3.0.5 Presence of mentors in early life and adolescence
= df_dropped['QS2_3_PRESENCEOFM'].value_counts()
presence_of_ment_611 = df_dropped['QS2_9_PRESENCEOFA'].value_counts()
presence_of_ment_1218
print("Presence of Mentor (ages 6-11) (QS2_3_PRESENCEOFM):")
Presence of Mentor (ages 6-11) (QS2_3_PRESENCEOFM):
print(presence_of_ment_611)
QS2_3_PRESENCEOFM
No 1451
Yes 1059
Unsure 275
Prefer not to say 53
Name: count, dtype: int64
print("Presence of Mentor (ages 12-18) (QS2_3_PRESENCEOFM):")
Presence of Mentor (ages 12-18) (QS2_3_PRESENCEOFM):
print(presence_of_ment_1218)
QS2_9_PRESENCEOFA
No 1373
Yes 1148
Unsure 264
Prefer not to say 53
Name: count, dtype: int64